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1. INTRODUCTION 
 

One of the most important functions out of a biped robot is 
to walk naturally like human, so toes have very important role 
for a biped robot to make its walking motion pattern like 
human [1]. Many researchers are studying on toed biped 
robots with this reason. Effectiveness of toe joints is discussed 
in three aspects. One is utilizing it to speed up the walking, 
another is using it to enable a biped robot to go up higher steps, 
and the other is using it to whole-body action in which knees 
are contacting to the ground [2]. 

Several researches of toe joint utilization in bipedal 
locomotion have been proposed such as passive toe joints and 
active toe joints. In case of a biped robot with passive toe 
joints, the edge of foot is hinged to the ground [3]. Its motion 
is ballistic walking during single supporting. This kind of 
model becomes a non-holonomic constraints system. The 
biped robot with active toe joints has more active motion, 
however it requires more actuators [2] and leads to many 
difficult problems, such as the increase of a robot’s weight, 
controlling, and choosing actuators. 

A biped robot with curved soles has good properties without 
additional actuator such as the biped robot with active toe 
joints. The research on curved soles has started from passive 
walking. McGeer’s results ([4], [5]) on passive dynamic 
walking suggest that the mechanical parameters have a greater 
effect on the existence. Another paper [6] proposed a 
self-excited biped walking mechanism. In these papers, the 
curved sole can roll smoothly and steadily along a level 
surface, maintaining any speed without loss of energy for 
supporting phase. We need the structure of a passive walking 
robot to obtain smooth motion, cutting down energy 
consumption and the effectiveness of toe joints. 

However, there are some problems. In single supporting 
phase, a biped robot with curved soles has a point contact. 
Hence, the robot is under-actuated system as a toed robot 
without actuator. To control a biped robot with curved soles, 
we have to solve under-actuated problems. There are various 
studies about the control of an under-actuated biped. One 
method [7] is based on the definition of the reference 
trajectory for outputs, not as a function of time, but as a 
function of a configuration variable independent of the outputs. 
With such a control, the configuration of the robot at impact 
time is the desired configuration, but its velocities can differ 
from the desired velocities. Another approach involves 
parameterized reference trajectories. In this case, one 
derivative of the parameter is used as a supplementary input. 

The parameter is used to satisfy some constraints on the 
reaction between the feet and the ground. 

In this paper, we modeled a biped robot with curved soles 
in Section 2. To get the desired trajectory of a biped robot with 
curved soles, we made a model called the Moving Inverted 
Pendulum Mode (MIPM) to generate this biped locomotion 
pattern in Section 3. It is similar to the Linear Inverted 
Pendulum Mode (LIPM) ([8], [9]), but robot’s contact point is 
moving in the horizontal direction. To solve under-actuated 
problems, we changed control variables, solved modified 
dynamic equations, and used the computed torque control in 
Section 4. In Section 5, the computer simulations of a biped 
robot with curved soles to compare the performance of the 
proposed model with that of a biped robot with flat soles. We 
finally summarize conclusions in Section 6. 
 
 

2. ROBOT MODELING 
 
2.1 The structure of the biped robot with curved soles  

Fig.1 shows the structure of a biped robot with curved soles. 
This robot is similar to the 6DOF biped robot with flat soles, 
but these soles are rounded. This biped robot walks in the 
sagittal plane. It is composed of a trunk and two identical legs.  

 

 
Fig.1 A biped robot with curved soles and its coordinates 
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Each leg is composed of three links that include curved sole. 
Each ankle, knee and hip is one-degree-of-freedom rotational 
joints. The walking cycle is composed of single support 
phases. During the single support phase, the vector 

Tq ],,,,,,[ 7654321 θθθθθθθ=  describes the configuration 
of the biped. Variable 1θ  and 7θ  describes the angle of 
links fixed on curved soles. The others describe each joint 
angle in absolute coordinates. All links are assumed massive 
and rigid. The parameters are:  
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where im  is mass of the link, il  is length of the link, id  is 

length from low edge of the link to center of link mass, iI  is 
mass moment of inertia, and R  is radius of sole. 
 
2.2 Dynamic modeling  

This model is composed of single support phases separated 
by instantaneous double support phases, and it has some 
assumptions: There is no slipping on the contact point, a 
landing leg is contacted on the ground, and impact force does 
not exist. 

Dynamic equations for the model are obtained by solving 
the Lagrange’s equation. The Lagrange’s equation relates to 
the angular acceleration of each joint and the applied torque of 
each actuator; then it is convenient to obtain a nonlinear state 
space model, taking the angular positions and velocities as 
state variables.  

Lagrange’s equations are expressed as 
 

)7~1( =Ξ=
∂
∂

−







∂
∂ i

q
L

q
L

dt
d

i
ii
v&v

 (3)

 
where 

 
∑
=

−− −=
∂

∂
=Ξ

−=
7

2
11 )(,)(

j
jjj

i
i WW

UTL

θθδτδ
θ
δ  

 
In single support phase, the dynamic model can be written 

as 
 

PTqGqqqHqqM =++ )(),()( v&v&vv&&vv  (4)
 
with 



























=





























−
−

−
−

−
−

=

6

5

4

3

2

1

,

100000
110000

011000
001100
000110
000011
000001

τ
τ
τ
τ
τ
τ

TP
  

 

where )77( ×M  is the inertia matrix, )77( ×H  is the 
vector of Coriolis and centrifugal, and )17( ×G  is the vector 
of gravity effects. T  is a )16( ×  torque matrix, and P  is a 

)67( ×  matrix. The number of actuator is six but there are 
seven independent configuration variables. 
 
 

3. REFERENCE TRAJECTORY 
 

3.1 Moving Inverted Pendulum Mode (MIPM)  
The biped locomotion is generated by the Linear Inverted 

Pendulum Mode (LIPM) in which the contact point is moving 
in the horizontal direction. In this case, we called it the MIPM 
(Moving Inverted Pendulum Mode). The MIPM is based on a 
simple biped model which consists of one particle. It is from 
the assumption that most of the weight of the biped robot is 
concentrated on its base link. Fig.2 shows the one-particle 
model for the MIPM. Where M denotes the mass of the base 
link. 1p  is a vector to a contact point. 2p  is a vector from a 
contact point to M . φ  is angle of the base link. 

 
Fig.2 MIPM Model 
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From this model, we can easily derive the angular 

momentum equation. Angular momentum with respect to the 
fixed coordinate is 
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If differentiating Eq.5 
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It is assumed that the robot moves only in the sagittal plane 

and the height of the base link remains constant, z=Hz 
 

Table 1: Assumption parameter 
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where 022 == zz &&&  because 2z  is constant. 
 

So, the differential angular momentum is  
 

)( 210 xxMHH z &&&&&v += . (7)
 
In this mode, the moment is  

 

2

1221

121

1

],0[],[

)(

Mgx
MgxgzxxM

gMpgppM
gMpgMPM

TT

o

=
−−×+=

−×+=
−×=

vvvvv

vvvvv

 
(8)

 
We get a simple equation that describes the dynamics along 

x-axis. 
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where 1x  and 2x  are functions of link angle φ . Thus, 
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Therefore, Eq.9 is derived as 
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As the result, reference locomotion trajectory is  
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)0(φ is initial position of the base link and initial velocity is 
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In the result, the particle in the MIPM has reference 

locomotion such as  
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This trajectory is the hip position in biped robot. 

 
3.2 Free leg trajectory  

As far as the free leg is concerned, any appropriate 
trajectory can be selected. The free leg trajectory is based on 

the contact point. In this paper, the following trajectory is 
selected for the free leg 
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where ( ))0()( 11 xTxS −+  is the stride, fh  is the 

maximum foot height, T  is the one step period, and the 

stride frequency is 
Tf
πω = . 

And we have to make angle trajectory of each link fixed on 
the curved soles. The foot angle 1θ  of the supporting leg is  
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where )0(1θ  and )0(φ  is each initial value. 

The foot angle of the swing leg, 7θ , is very important. 7θ  

has to connect the supporting leg’s angle 1θ  smoothly, 
therefore we make the third order polynomial satisfied with 
following conditions.  
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4. CONTROL 
 

This paper presents a control law for the tracking of a 
cyclic reference trajectory. It is based upon the computed 
torque control. This controller uses error dynamics of the link 
positions and joint angles. 
 
4.1 Modified dynamic equation  

The sole of a supporting leg contacts to the floor as a point. 
This non-actuated point is a free joint that cannot easily 
balance a robot’s body and stabilize robot’s motions. This 
instability condition is caused by the under-actuated system 
which is difficult to control the angular momentum and body 
posture. 

Eq.4 is the dynamic equation of a curved sole biped robot, 
where T  is a )16( ×  torque matrix, and P  is a )67( ×  
matrix. The number of torques is six but there are seven 
independent configuration variables. The degree of 
under-actuation is the one of them during the single support 
phase.  

The matrix P  is a )67( ×  full rank matrix. Thus, there 

exist )71( ×  matrices denoted ⊥P  such that 0=⊥PP . The 
matrix M  is invertible, but the matrix P  is not invertible. 
P  is a )67( ×  full rank matrix, thus its pseudo-inverse +P  

is such that IPP =+ . By definition of +P  and ⊥P , the 
matrix TPP ][ +⊥  is a )77( ×  invertible matrix. Thus Eq.4 is 
equivalent to the following set of equations: 
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( ) 0)(),()( =++⊥ qGqqqHqqMP v&v&vv&&vv  (17)
 

( ) TqGqqqHqqMP =+++ )(),()( v&v&vv&&vv  (18)
 
The matrix P  is constant. Therefore +P  and ⊥P  are 

constant, and can be calculated offline. This system is not 
singular. 
 
4.2 Control algorithm  

The control is based on computed torque control. To solve 
the under-actuated problem in this paper, we change the 
control variables: hip-position ),( hh zx , swing leg 

ankle-position ),( ff zx , trunk-angle )( hθ , and foot-angle of 

the swing leg )( fθ . The changed control variable vector is  
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therefore we have six actuators, and we have six control 
variables. 

Error dynamics is 
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Vector r  is composed of dynamic equation parameters, q . 
 
Then, we have to eliminate one parameter to solve the 

under-actuated problems. We chooses 1θ . 7654 ,,, θθθθ  is 

depended on six control variables, and 32 ,θθ  is decided by 

1θ . Therefore, we arrange Eq.17 to 1θ&& , and cancel 1θ&&  in 
Eq.19, we have a equation such as 
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Using the error dynamics, we have 765432 ,,,,, θθθθθθ &&&&&&&&&&&& . This 

values are inserted in Eq.17, we have 1θ&& . In the result, we can 
solve the torque equation, Eq.18.  
  This control low is used alternately during every step. 
 
 

5. SIMULATION 
 

Simulations are executed in order to show the stable 
walking and compare the performance of the proposed model 
with that of a biped robot with flat soles. The parameters for 
generating the walking pattern are also shown in Table 2.  

This model is composed of single support phases, and it has 

some assumptions: There is no slipping on the contact point, a 
landing leg is contacted on the ground, and impact force does 
not exist. 
 

Table 2: walking pattern parameters 
Parameters Symbol Dimension 
Step Time T  0.6 (sec) 
CG Height zH  0.7 (m) 

Stride ( ))0()( 11 xTxS −+  0.25 +α (m)
Maximum Foot 

Height fh  0.05 (m) 

Radius of sole R 0.3 (m) 
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Fig. 3 Desired Trajectory 

 
Fig.3 shows the desired trajectory in where ‘xh’ and ‘zh’ are 

hip-position ),( hh zx , ‘xf’ and ‘zf’ are swing leg ankle- 

position ),( ff zx , ‘theh’ is trunk-angle )( hθ , and ‘thef’ is 

foot-angle of the swing leg )( fθ . On single supporting phase 

simulation, the landing of a swing leg happens at the same 
time when supporting leg takes off. From this reason, the three 
values out of the six control values are not continuous and 
these cause errors. 
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Fig. 4 Stick diagram for the locomotion 

 
Fig.4 shows a stick graph of a simulation result. Each stick 

shows each link. The dots are each joint. There isn’t reference 
position about the contact point, however a biped robot with 
curved soles can walk stably. In case of higher walking speed, 
the simulation shows stable walking. The curved soles cause 



ICCAS2003                           October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea      
 

the same effect as dynamic link whose length changes. 
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Fig. 5 Supporting Leg 

 
Fig.5 shows supporting leg, and its contact point is moving 

horizontally. This figure is that the curved sole rolls on the 
ground. Initial contact point is 0 (m), and final contact point is 
0.13 (m). 
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Fig. 6 Simulation Trajectory Result  

 
As the result of simulations, Fig.6 shows the control 

variable trajectories. Especially, fθ  makes errors at the 

contact moment. It is caused by changing the swing legs. 
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Fig. 7 Error for 3 steps 

At the first contact moment, the largest error is coming. The 
reason is that )(1 Tθ  is not equal to )0(7θ , however 

)(7 Tθ is equal to )0(1θ , thus the error is periodic after the 
second step. 
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Fig. 8 Error for 10 steps 

 
Fig.8 show the errors of a simulation for 10 steps. After the 

second step, the magnitude of the hip position errors are 
within 0.003(m) and 0.001(m), it of the trunk angle error is 
within 0.001(rad), and it of the swing foot positions are within 
0.006(m), 0.002 (m).  
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Fig. 9 Torque for 3 steps 
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Fig. 10 Torque for 10 steps 



Fig. 9 shows an applied torque in this simulation. It shows 
that an applied torque is realistic and reasonable. For the 
single supporting phase, the torque is smaller than that of a 
biped robot with flat soles except for contact moments. After 
the second step, the torque has the same figure. 

 
 

6. CONCLUSION  
In this paper, we proposed the desired trajectory for a biped 

robot with curved soles and the control algorithm to solve the 
under-actuated problems, and then we simulated it. To get the 
desired trajectory, we proposed the MIPM in which the 
contact point is moving in the horizontal direction. To solve 
the under-actuated problems, we changed control variables, 
used modified dynamic equations and used the computed 
torque control. 

Simulation results show that a biped robot with curved soles 
can walk stably, though the periodical error occurs. And fast 
walking and natural motion of biped robot can be 
implemented. A biped robot with curved soles can take place 
of the toed biped robot without additional actuator. 
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