최근 모바일 기기의 영상 촬영 기능의 확대에 따라, 영상처리를 위한 다양한 어플리케이션들이 모바일 환경으로 이식되고 있다. 또한 모바일 기기의 컴퓨팅 능력또한 상승으로 기존에 컴퓨터에서만 가능하였던 다양한 영상처리기술들이 모바일 환경으로 이식되고 있다. 이러한 영상처리 기술 중, 사용자가 촬영한 영상에서 전경만을 추출하여 원하는 새로운 배경에 합성하는 문제는 다양한 어플리케이션에서 사용이 가능하나 계산이 복잡하다는 문제점으로 모바일환경 이식에 어려움을 가지고 있었다. 본 연구에서는 모바일 기기로 촬영된 영상을 전경/배경으로 구분하여 목표 영상에 실시간으로 합성할 수 있는 영상합성 기술을 제안한다. 사용자가 촬영한 영상에서 배경이 움직이지 않는다는 가정하에 자동으로 전경을 추출하며 이를 새로운 배경에 합성하는 기법을 소개한다. 모바일 촬영의 특성을 고려하여 촬영시 약한 움직임을 포함하는 영상에서의 자동 전경 추출 알고리즘을 개발하며 이를 SIMD 및 GPGPU기반의 가속화 알고리즘을 사용하여 SD급 화질의 영상에 대해 모바일 상에서 실시간 처리가 가능한 결과를 보인다. 본 논문의 기술을 사용하여 상용화 가능한 영상처리 어플리케이션의 개발이 가능하다.
ITU-T VCEG 과 ISO/IEC MPEG 이 공동으로 구성한 JCT-VC (Joint Collaborative Team on Video Coding)이 표준화를 진행 중인 HEVC (High Efficiency Video Coding)은 H.264/AVC 대비 약 2 배의 압축효율을 갖는다. 하지만, 계층적 구조를 갖는 가변크기 블록의 사용과 재귀적 부호화 구조에 따른 인코더의 복잡도 증가는 개선해야 할 문제점으로 지적되고 있다. 본 논문에서는 현재 표준화가 진행 중인 HEVC 인코더의 실시간 구현을 위한 SIMD 명령어를 이용한 data-level 병렬화 기법, CPU 및 GPU 를 이용한 multi-threading 기법과 같은 다양한 병렬화 기법을 소개한다. 또한, 이러한 병렬화 기법들을 HEVC 인코더에 적용하기 위해 적합한 연산 및 기능 모듈에 대하여 소개한다. 본 연구를 통하여 HM (HEVC reference model)에 적용한 결과 $832{\times}480$ 영상의 경우 20-30fps 의 부호화 속도를 나타냈으며, $1920{\times}1080$ 영상의 경우 5-10fps 의 부호화 속도를 나타내었다.
ISO/IEC MPEG과 ITU-T VCEG이 공동으로 구성한 JCT-VC (Joint Collaborative Team on Video Coding)가 표준화를 진행한 HEVC (High Efficiency Video Coding)는 H.264/AVC 대비 약 2배 혹은 그 이상의 압축효율을 목표로 표준화가 시작되었다. 하지만, 계층적 구조를 갖는 가변크기 블록의 사용과 재귀적 부호화 구조에 따른 인코더의 복잡도 증가는 개선해야 할 문제점으로 지적되고 있다. HEVC 인코더의 복잡도를 감소시키기 위하여 다양한 고속화 알고리즘들이 제안되고 있으나, 고속화 알고리즘으로 얻을 수 있는 속도 향상만으로 HEVC 인코더의 실시간성을 확보하기에는 어려움이 있다. 본 논문에서는 현재 표준화가 완료된 HEVC 인코더의 실시간 구현을 위하여 SIMD 명령어를 이용한 데이터 수준 병렬화 기법, CPU 및 GPU를 이용한 멀티스레딩 기법과 같은 다양한 병렬화 기법을 소개한다. 또한, 이러한 병렬화 기법들을 HEVC 인코더에 적용하기 위해 적합한 연산 및 기능 모듈에 대하여 소개한다. 본 연구에서 제안한 방법을 HM (HEVC reference model) 10.0에 적용한 결과 $832{\times}480$ 영상의 경우 20~30fps의 부호화 속도를 나타냈으며, $1920{\times}1080$ 영상의 경우 5~10fps의 부호화 속도를 나타내었다.
This paper presents a performance study of two LU decomposition algorithms on two massively parallel SIMD machines: the 16K processor MasPar MP-1 and the 4K processor MasPar MP-2. The paper presents experimental results and an analysis of the algorithms to explain the results. While the blocked and the nonblocked algorithms for LU decomposition have been studied individually by others, we compare the two algorithms and identify the tradeoffs between them. Our analysis of the blocked algorithm shows how the block size affects the interprocessor communication cost and the memory read/write overhead. The analysis in this paper is useful to determine an optimum block size for the blocked algorithm.
The purpose of this paper is to suggest and analyze the parallel algorithm for merging two heaps, on SIMD-SM-R parallel computer. In order to create the parallel algorithm for merging two heaps, we have classified two subproblems. For the first method, to select node p as a LEVEL-FIND function, Wyllie(19) suggests the method with time complexity O(log n) while this thesis has O(log(n/k)). For the second method, to merge two subheap, our algorithm has O(log(n/k)*log(n)) using max(2**(i-1), 「(m+1)/4」)'s processors while Dekel and Sahni(4)'s method and Hong's method(18) have O(log m). Also our parallel algorithm's EPU is close to 1 and so has an optimal speed-up ratio.
프로세서는 더 이상 동작 주파수를 높이는 방법이 아닌 다수의 프로세서를 집적하는 멀티프로세서로 기술 발전이 이루어지고 있다. 최근 2, 4, 8개의 프로세서 코어를 넘어 64, 128개 이상의 프로세서를 집적한 대규모 데이터 처리용 고성능 프로세서들이 개발되고 있다. 본 논문에서는 기타의 음 합성을 위한 최적의 매니코어 프로세서 구조를 제안한다. 기존의 연구에서는 하나의 기타 현에 하나의 프로세싱 엘리먼트(processing element, PE)를 할당하여 음을 합성하였으나, 본 논문은 하나의 기타 현에 여러 개의 PE를 할당하고 각각의 경우에 대해 시스템 성능, 시스템 면적 효율 및 에너지 효율을 평가하였다. 샘플링율이 44.1kHz, 양자화 비트 16인 기타 음을 사용하여 모의 실험한 결과, 시스템 면적 효율은 PE 수가 24개, 에너지 효율은 PE 수가 96개일 때 각각 최적의 효율을 보였다. 또한, 최적의 매니코어 프로세서를 이용하여 합성한 결과 합성음은 원음과 스펙트럼에서 매우 유사하였다. 더불어, 음 합성에 가장 많이 사용되는 TI TMS320C6416보다 시스템 면적에서 1,235배, 에너지 효율에서 22배의 향상을 보였다.
본 논문에서는 단일 명령어, 다중 데이터 처리 기반의 매니코어 프로세서를 이용하여 높은 계산량이 요구되는 차감 클러스터링 알고리즘을 병렬 구현하고 성능을 향상시킨다. 또한 차감 클러스터링 알고리즘을 위한 최적의 매니코어 프로서서 구조를 선택하기 위해 다섯 가지의 프로세싱 엘리먼트 (processing element, PE) 구조 (PEs=16, 64, 256, 1,024, 4,096)를 모델링하고, 각 PE구조에 대해 실행시간 및 에너지 효율을 측정한다. 두 가지 의료 영상 및 각 영상의 세 가지 해상도(($128{\times}128$, $256{\times}256$, $512{\times}512$)를 이용하여 모의 실험한 결과, 모든 경우에 대해 PEs=4,096구조에서 최고의 성능 및 에너지 효율을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권2호
/
pp.728-741
/
2015
Stereo vision has become an important technical issue in the field of 3D imaging, machine vision, robotics, image analysis, and so on. The depth map extraction from stereo video is a key technology of stereoscopic 3D video requiring stereo correspondence algorithms. This is the matching process of the similarity measure for each disparity value, followed by an aggregation and optimization step. Since it requires a lot of computational power, there are significant speed-performance advantages when exploiting parallel processing available on processors. In this situation, multi-core CPU may allow many parallel programming technologies to be realized in users computing devices. This paper proposes parallel implementations for calculating disparity map using a shared memory programming and exploiting the streaming SIMD extension technology. By doing so, we can take advantage both of the hardware and software features of multi-core processor. For the performance evaluation, we implemented a parallel SAD algorithm with OpenMP and SSE2. Their processing speeds are compared with non parallel version on stereoscopic streaming video. The experimental results show that both technologies have a significant effect on the performance and achieve great improvements on processing speed.
SHVC(Scalable High efficiency Video Coding)는 다양한 멀티미디어 서비스 환경에서 높은 코딩 효율을 위해 공간적, 시간적, 화질적 스케일러빌리티를 이용한 표준 기술이다. SHVC는 멀티-계층 부/복호화를 수행하기 때문에 싱글-계층인 HEVC(High Efficiency Video Coding) 보다 추가적인 복잡도를 요구한다. 본 논문에서는 SHVC 복호화기의 복잡도를 분석하고 SHVC 복호화기에서 높은 복잡도를 차지하는 프레임 기반 업샘플링을 PU 기반 On-the-fly 업샘플링(On-the-fly Up-sampling) 방법과 SIMD 연산을 통해 고속화 한다. 제안하는 알고리즘이 적용된 SHVC 복호화기는 기존 SHVC 복호화기의 복호화 시간보다 평균 1.23배 고속화 성능을 보이며 업샘플링의 복잡도가 24.7%에서 1.9%로 감소하였다. On-the-fly 업샘플링 과정은 기존 프레임 레벨 업샘플링 과정 대비 평균 90.3% 수행시간 감소율을 보인다.
본 논문은 3차원 디스플레이 시스템에서 카메라의 기하 정보 및 참조 영상들의 깊이 맵 정보가 주어졌을 때, 다수의 중간 시점 영상을 실시간으로 생성하는 고속 영상 합성 기법을 제안한다. 기본적으로 본 논문에서는 영상 합성 기법의 모든 과정을 GPU에 서 병렬 처리함으로써 고속화 할 수 있었다. 병렬처리를 이용한 고속화 효율을 높이기 위해 최근 NVIDIA사에서 발표한 $CUDA^{TM}$를 이용하였다. 영상 합성을 위한 모든 중간 과정을 CUDA로 처리하기 위해 병렬구조로 변환하고, GPU 상의 고속메모리의 사용을 극대화하고, 알고리즘 구현을 최적화함으로써 고속화 효율을 높일 수 있었다. 결과적으로 본 논문에서는 양안 영상과 깊이 지도를 이용하여 가로 720, 세로 480 크기의 9개의 시점 영상을 0.128초 이내에 생성할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.