DOI QR코드

DOI QR Code

Design Space Exploration of Many-Core Processor for High-Speed Cluster Estimation

고속의 클러스터 추정을 위한 매니코어 프로세서의 디자인 공간 탐색

  • Seo, Jun-Sang (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Cheol-Hong (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan)
  • 서준상 (울산대학교 전기공학부) ;
  • 김철홍 (전남대학교 전자컴퓨터공학부) ;
  • 김종면 (울산대학교 전기공학부)
  • Received : 2014.06.10
  • Accepted : 2014.09.17
  • Published : 2014.10.31

Abstract

This paper implements and improves the performance of high computational subtractive clustering algorithm using a single instruction, multiple data (SIMD) based many-core processor. In addition, this paper implements five different processing element (PE) architectures (PEs=16, 64, 256, 1,024, 4,096) to select an optimal PE architecture for the subtractive clustering algorithm by estimating execution time and energy efficiency. Experimental results using two different medical images and three different resolutions ($128{\times}128$, $256{\times}256$, $512{\times}512$) show that PEs=4,096 achieves the highest performance and energy efficiency for all the cases.

본 논문에서는 단일 명령어, 다중 데이터 처리 기반의 매니코어 프로세서를 이용하여 높은 계산량이 요구되는 차감 클러스터링 알고리즘을 병렬 구현하고 성능을 향상시킨다. 또한 차감 클러스터링 알고리즘을 위한 최적의 매니코어 프로서서 구조를 선택하기 위해 다섯 가지의 프로세싱 엘리먼트 (processing element, PE) 구조 (PEs=16, 64, 256, 1,024, 4,096)를 모델링하고, 각 PE구조에 대해 실행시간 및 에너지 효율을 측정한다. 두 가지 의료 영상 및 각 영상의 세 가지 해상도(($128{\times}128$, $256{\times}256$, $512{\times}512$)를 이용하여 모의 실험한 결과, 모든 경우에 대해 PEs=4,096구조에서 최고의 성능 및 에너지 효율을 보였다.

Keywords

References

  1. M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D. M. Carmeans, D. Hanson, P. Dubey, K. Augustine, D. Kim, A. Kyker, V. W. Lee, A. D. Nguyen, L. Seiler, R. Robb, "Mapping High-Fidelity Volume Rendering for Medical Imaging to CPU, GPU and Many-Core Architectures," IEEE Trans. on Visualization and Computer Graphics, Vol. 15, No. 6, pp. 1563-1579, 2009. https://doi.org/10.1109/TVCG.2009.164
  2. S. Krinidis, V. Chatzis, "A Robust Fuzzy Local Information C-Mans Clustering Algorithm," IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1328-1337, 2010. https://doi.org/10.1109/TIP.2010.2040763
  3. J. Bezdek, Pattern Recognition With Fuzzy Objective Function Algorithm. New York: Plenum, 1981.
  4. D. Pham, "An Adaptive Fuzzy C-Means Algorithm for Image Segmentation in the Presence of Intensity Inhomogeneities," Pattern Recognition Letters, vol. 20, pp. 57-68, 1999. https://doi.org/10.1016/S0167-8655(98)00121-4
  5. J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, "An Initialization Method for Fuzzy C-means Algorithm using Subtractive Clustering," Proceedings of IEEE, vol.96, no.5, pp. 879-899, 2010.
  6. R. J. Cho, M. Huang, M. J. Campbell, H. Dong, L. Steinmetz, L. Sapinoso, et al, "Transcriptional Regulation and Function during the Human Cell Cycle," Nature Genetics article, vol. 27, pp. 48-54, 2001.
  7. Y. I. Kim, D. W. Kim, D. Lee, K.H. Lee, "A Cluster Validation Index for GK Cluster Analysis based on Relative Degree of Sharing," Information Sciences, vol. 168, pp. 225-242, 2004. https://doi.org/10.1016/j.ins.2004.02.006
  8. Y. Okada, T. Sahara, H. Mitsubayashi, S. Ohgiya, T. Nagashima, "Knowledge-assisted Recognition of Cluster Boun-daries in Gene Expression Data," Artif. Intell. Med., vol. 35, pp. 171-183, 2005. https://doi.org/10.1016/j.artmed.2005.02.007
  9. S.L. Chiu, "Fuzzy Model Identification based on Cluster Estimation," Journal of Intelligent and Fuzzy Systems, vol. 2, pp. 267-278, 1994.
  10. S.L. Chiu, "Extracting Fuzzy Rules from Data for Function Approximation and Pattern Classification," Fuzzy Information Engineering: a Guide Tour of Applications, pp. 149-162, 1997.
  11. Z.h. Sun, "Study on Subtractive Clustering Video Moving Object Locating Method with Introduction of Eigengap," in the 9th International Conference on Fuzzy Systems and Knowledge Discovery, pp. 609-612, 2012.
  12. S.H. Lee, "The Design and Implementation of Parallel Processing System using the Nios^{(R)}II Embedded Processor," The Korea Society of Computer and Information, vol. 14, no. 11, pp. 97-103, Nov. 2009.
  13. A. Gentile and D. S. Wills, "Portable Video Supercomputing," IEEE Trans. on Computers, vol. 53, no. 8, pp. 960-973, 2004. https://doi.org/10.1109/TC.2004.48
  14. Y.H. Kim and J.M. Kim, "Design Space Exploration of Optimal many-Core Processors for Discrete Wavelet Transform," Journal of Institute of Embedded Engineering of Korea, vol. 7, no. 5, pp. 277-284, 2012.
  15. Y.M. Kim and J.M. Kim, "Design and Verification of High-Performance Parallel Processor Hardware for JPEG Encoder," Journal of Institute of Embedded Engineering of Korea, vol. 6, no. 2, pp. 100-107, 2011.
  16. S. Sonntag, and F. Gilabert, "Design Space Exploration and Performance Evaluation at Electronic System Level for NoC-based MPSoC," IEEE/ACM International Conf. Computer-Aided Design, pp. 336-339, 2010.
  17. H.G. Lee, U.Y. Ogras, R. Marculescu, and N. Chang, "Design Space Exploration and Prototyping for On-chip Multimedia Applications," Proceedings of the 43rd Annual Design Automation Conf., pp. 137-142, 2006.
  18. R. Yager, D. Filev, "Generation of Fuzzy Rules by Mountain Clustering," Journal of Intelligent and Fuzzy Systems., vol. 2, no. 3, pp. 209-219, 1994.
  19. S.G. Park, S.J. Choi, "Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method," Korea Intelligent Information System Society, vol. 22, no. 4, pp. 500-506, 2012. https://doi.org/10.5391/JKIIS.2012.22.4.500
  20. R. Qun, L. Baron, and M. Balazinski, "Type-2 Takagi-Sugeno-Kang Fuzzy Logic Modeling using Subtractive Clustering," Fuzzy Information Processing Society., pp. 120-125, 2006.
  21. B.-K. Choi, J.-M. Kim, "Implementation of Multi-Core Processor for Beamforming Algorithm of Mobile Ultrasound Image Signals," Journal of The Korea Society of Computer and Information, vol. 18, no. 2, pp. 1-8, 2011.
  22. S.-M. Kang, J.-M. Kim, "Multimedia Extension Instructions and Optimal Many-core Processor Architecture Exploration for Portable Ultrasonic Image Processing," Journal of The Korea Society of Computer and Information, vol. 17, no. 8, pp. 1-10, 2012. https://doi.org/10.9708/jksci.2012.17.8.001
  23. J.-Y. Kim, D.-G. Son, J.-M. Kim, H.-S. Jeon, "Parallel Implementation and Performance Evaluation of the SIFT Algorithm Using a Many-Core Processor, " Journal of The Korea Society of Computer and Information, vol. 18, no. 8, pp. 1-10, 2013. https://doi.org/10.9708/jksci.2013.18.9.001
  24. J.-S. Seo, M.-S. Kang, C.-H. Kim, J.-M. Kim, "Design Space Exploration of Embedded Many-Core Processors for Real-Time Fire Feature Extraction", Journal of The Korea Society of Computer and Information, vol. 18, no. 10, pp. 1-12, 2013. https://doi.org/10.9708/jksci.2013.18.10.001
  25. I.-K. Jung, J.-S. Seo, M.-S. Kang, C.-H. Kim, J.-M. Kim, "Implementation and Performance Analysis of Fuzzy C-Means Algorithm Using GPGPU," Journal of Korean Institute of Next Generation Computing, vol. 9, no. 5, pp. 27-37, 2013.
  26. S.-H. Yi, Y.-S. Woo, B.-N. Jang and Y.-M. Yi, "Efficient Local Binary Pattern Based Face Recognition Using OpenCL on the Embedded GPU," Journal of Korean Institute of Information Scientists and Engineers, vol. 40, no. 6, pp. 257-265, 2013.