• Title/Summary/Keyword: SIMD Processor

Search Result 65, Processing Time 0.026 seconds

A Novel Reconfigurable Processor Using Dynamically Partitioned SIMD for Multimedia Applications

  • Lyuh, Chun-Gi;Suk, Jung-Hee;Chun, Ik-Jae;Roh, Tae-Moon
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.709-716
    • /
    • 2009
  • In this paper, we propose a novel reconfigurable processor using dynamically partitioned single-instruction multiple-data (DP-SIMD) which is able to process multimedia data. The SIMD processor and parallel SIMD (P-SIMD) processor, which is composed of a number of SIMD processors, are usually used these days. But these processors are inefficient because all processing units (PUs) should process the same operations all the time. Moreover, the PUs can process different operations only when every SIMD group operation is predefined. We propose a processor control method which can partition parallel processors into multiple SIMD-based processors dynamically to enhance efficiency. For performance evaluation of the proposed method, we carried out the inverse transform, inverse quantization, and motion compensation operations of H.264 using processors based on SIMD, P-SIMD, and DP-SIMD. Experimental results show that the DP-SIMD control method is more efficient than SIMD and P-SIMD control methods by about 15% and 14%, respectively.

Acceleration of FFT on a SIMD Processor (SIMD 구조를 갖는 프로세서에서 FFT 연산 가속화)

  • Lee, Juyeong;Hong, Yong-Guen;Lee, Hyunseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.97-105
    • /
    • 2015
  • This paper discusses the implementation of Bruun's FFT on a SIMD processor. FFT is an algorithm used in digital signal processing area and its effective processing is important in the enhancement of signal processing performance. Bruun's FFT algorithm is one of fast Fourier transform algorithms based on recursive factorization. Compared to popular Cooley-Tukey algorithm, it is advantageous in computations because most of its operations are based on real number multiplications instead of complex ones. However it shows more complicated data alignment patterns and requires a larger memory for storing coefficient data in its implementation on a SIMD processor. According to our experiment result, in the processing of the FFT with 1024 complex input data on a SIMD processor, The Bruun's algorithm shows approximately 1.2 times higher throughput but uses approximately 4 times more memory (20 Kbyte) than the Cooley-Tukey algorithm. Therefore, in the case with loose constraints on silicon area, the Bruun's algorithm is proper for the processing of FFT on a SIMD processor.

Implementation of SIMD-based Many-Core Processor for Efficient Image Data Processing (효율적인 영상데이터 처리를 위한 SIMD기반 매니코어 프로세서 구현)

  • Choi, Byong-Kook;Kim, Cheol-Hong;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Recently, as mobile multimedia devices are used more and more, the needs for high-performance and low-energy multimedia processors are increasing. Application-specific integrated circuits (ASIC) can meet the needed high performance for mobile multimedia, but they provide limited, if any, generality needed for various application requirements. DSP based systems can used for various types of applications due to their generality, but they require higher cost and energy consumption as well as less performance than ASICs. To solve this problem, this paper proposes a single instruction multiple data (SIMD) based many-core processor which supports high-performance and low-power image data processing while keeping generality. The proposed SIMD based many-core processor composed of 16 processing elements (PEs) exploits large data parallelism inherent in image data processing. Experimental results indicate that the proposed SIMD-based many-core processor higher performance (22 times better), energy efficiency (7 times better), and area efficiency (3 times better) than conversional commercial high-performance processors.

Implementation and Performance Evaluation of Vector based Rasterization Algorithm using a Many-Core Processor (매니코어 프로세서를 이용한 벡터 기반 래스터화 알고리즘 구현 및 성능평가)

  • Shon, Dong-Koo;Kim, Jong-Myon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, we implemented and evaluated the performance of a vector-based rasterization algorithm of 3D graphics using a SIMD-based many-core processor that consists of 4,096 processing elements. In addition, we compared the performance and efficiency of the rasterization algorithm using the many-core processor and commercial GPU (Graphics Processing Unit) system which consists of 7 GPUs and each of which have 512 cores. Experimental results showed that the SIMD-based many-core processor outperforms the commercial GPU system in terms of execution time (3.13x speedup), energy efficiency (17.5x better), and area efficiency (13.3x better). These results demonstrate that the SIMD-based many-core processor has potential as an embedded mobile processor.

SIMD MAC Unit Design for Multimedia Data Processing (멀티미디어 데이터 처리에 적합한 SIMD MAC 연산기의 설계)

  • Hong, In-Pyo;Jeong, Woo-Kyong;Jeong Jae-Won;Lee Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.44-55
    • /
    • 2001
  • MAC(Multiply and ACcumulate) is the core operation of multimedia data processing. Because MAC units implemented on traditional DSP units or embedded processors have latency of three cycles and cannot operate on multiple data simultaneously, then, performances are seriously limited. Many high end general purpose microprocessors have SIMD MAC unit as a functional unit. But these high end MAC units must support pipeline structure for various operation modes and high clock frequency, which makes control logic complex and increases chip area. In this paper, a 64bit SIMD MAC unit for embedded processors is designed. It is implemented to have a latency of one clock cycle to remove pipeline control logics and a minimal area overhead for SIMD support is added to existing Booth multipliers.

  • PDF

Implementation of Pixel Subword Parallel Processing Instructions for Embedded Parallel Processors (임베디드 병렬 프로세서를 위한 픽셀 서브워드 병렬처리 명령어 구현)

  • Jung, Yong-Bum;Kim, Jong-Myon
    • The KIPS Transactions:PartA
    • /
    • v.18A no.3
    • /
    • pp.99-108
    • /
    • 2011
  • Processor technology is currently continued to parallel processing techniques, not by only increasing clock frequency of a single processor due to the high technology cost and power consumption. In this paper, a SIMD (Single Instruction Multiple Data) based parallel processor is introduced that efficiently processes massive data inherent in multimedia. In addition, this paper proposes pixel subword parallel processing instructions for the SIMD parallel processor architecture that efficiently operate on the image and video pixels. The proposed pixel subword parallel processing instructions store and process four 8-bit pixels on the partitioned four 12-bit registers in a 48-bit datapath architecture. This solves the overflow problem inherent in existing multimedia extensions and reduces the use of many packing/unpacking instructions. Experimental results using the same SIMD-based parallel processor architecture indicate that the proposed pixel subword parallel processing instructions achieve a speedup of $2.3{\times}$ over the baseline SIMD array performance. This is in contrast to MMX-type instructions (a representative Intel multimedia extension), which achieve a speedup of only $1.4{\times}$ over the same baseline SIMD array performance. In addition, the proposed instructions achieve $2.5{\times}$ better energy efficiency than the baseline program, while MMX-type instructions achieve only $1.8{\times}$ better energy efficiency than the baseline program.

Multi-Core Processor for Real-Time Sound Synthesis of Gayageum (가야금의 실시간 음 합성을 위한 멀티코어 프로세서 구현)

  • Choi, Ji-Won;Cho, Sang-Jin;Kim, Cheol-Hong;Kim, Jong-Myon;Chong, Ui-Pil
    • The KIPS Transactions:PartA
    • /
    • v.18A no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Physical modeling has been widely used for sound synthesis since it synthesizes high quality sound which is similar to real-sound for musical instruments. However, physical modeling requires a lot of parameters to synthesize a large number of sounds simultaneously for the musical instrument, preventing its real-time processing. To solve this problem, this paper proposes a single instruction, multiple data (SIMD) based multi-core processor that supports real-time processing of sound synthesis of gayageum which is a representative Korean traditional musical instrument. The proposed SIMD-base multi-core processor consists of 12 processing elements (PE) to control 12 strings of gayageum in which each PE supports modeling of the corresponding string. The proposed SIMD-based multi-core processor can generate synthesized sounds of 12 strings simultaneously after receiving excitation signals and parameters of each string as an input. Experimental results using a sampling reate 44.1 kHz and 16 bits quantization show that synthesis sound using the proposed multi-core processor was very similar to the original sound. In addition, the proposed multi-core processor outperforms commercial processors(TI's TMS320C6416, ARM926EJ-S, ARM1020E) in terms of execution time ($5.6{\sim}11.4{\times}$ better) and energy efficiency (about $553{\sim}1,424{\times}$ better).

Implementation of Parallel Processor for Sound Synthesis of Guitar (기타의 음 합성을 위한 병렬 프로세서 구현)

  • Choi, Ji-Won;Kim, Yong-Min;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.191-199
    • /
    • 2010
  • Physical modeling is a synthesis method of high quality sound which is similar to real sound for musical instruments. However, since physical modeling requires a lot of parameters to synthesize sound of a musical instrument, it prevents real-time processing for the musical instrument which supports a large number of sounds simultaneously. To solve this problem, this paper proposes a single instruction multiple data (SIMD) parallel processor that supports real-time processing of sound synthesis of guitar, a representative plucked string musical instrument. To control six strings of guitar, we used a SIMD parallel processor which consists of six processing elements (PEs). Each PE supports modeling of the corresponding string. The proposed SIMD processor can generate synthesized sounds of six strings simultaneously when a parallel synthesis algorithm receives excitation signals and parameters of each string as an input. Experimental results using a sampling rate 44.1 kHz and 16 bits quantization indicate that synthesis sounds using the proposed parallel processor were very similar to original sound. In addition, the proposed parallel processor outperforms commercial TI's TMS320C6416 in terms of execution time (8.9x better) and energy efficiency (39.8x better).

The Design of low-cost SIMD MAC/MAS for Embedded Systems (임베디드 시스템을 위한 저비용 SIMD MAC/MAS 블록 설계)

  • Lee Yong Joo;Jung Jin Woo;Lee Yong Surk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1460-1468
    • /
    • 2004
  • In this paper, we developed a low-area and low-cost SIMD MAC/MAS(Single Instruction Multiple Data Multiply and ACcumulate/Multiply And Subtract) for multimedia that is used much in real life. We compared the result of this research with a previously developed more large and high performance SIMD MAC/MAS. This paper is consist of 5 parts, which are an introduction, the contents of designing SIMD MAC/MAS hardware, a special qualities for previous works, the result of synthesis and conclusion. The design result reduced by size 32% of whole hardware than 64 bit SIMD MAC/MAS block of designed for high performance. This improved ISA (Instruction Set Architecture) to be suitable to embedded DSP(Digital Signal Processor), and shortened bit range of 64-bit data to 32-bit and implement more optimally.

Programming Model for SODA-II: a Baseband Processor for Software Defined Radio Systems (SDR용 기저대역 프로세서를 위한 프로그래밍 모델)

  • Lee, Hyun-Seok;Yi, Joon-Hwan;Oh, Hyuk-Jun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.78-86
    • /
    • 2010
  • This paper discusses the programming model of SODA-II that is a baseband processor for software defined radio (SDR) systems. Signal processing On-Demand Architecture Ⅱ (SODA-II) is an on-chip multiprocessor architecture consisting of four processor cores and each core has both an wide SIMD datapath and a scalar datapath. This architecture is appropriate for baseband processing that is a mixture of vector computations and scalar computations. The programming model of the SODA-II is based on C library routines. Because the library routines hide the details of complex SIMD datapath control procedures, end users can easily program the SODA-II without deep understanding on its architecture. In this paper, we discuss the details of library routines and how these routines are exploited in the implementation of baseband signal processing algorithms. As application examples, we show the implementation result of W-CDMA multipath searcher and OFDM demodulator on the SODA-II.