Browse > Article
http://dx.doi.org/10.3745/KIPSTA.2011.18A.1.001

Multi-Core Processor for Real-Time Sound Synthesis of Gayageum  

Choi, Ji-Won (울산대학교 컴퓨터공학과)
Cho, Sang-Jin (울산대학교 BK21 e-Vehicle연구인력양성사업단)
Kim, Cheol-Hong (전남대학교 전자컴퓨터공학부)
Kim, Jong-Myon (울산대학교 컴퓨터정보통신공학부)
Chong, Ui-Pil (울산대학교 컴퓨터정보통신공학부)
Abstract
Physical modeling has been widely used for sound synthesis since it synthesizes high quality sound which is similar to real-sound for musical instruments. However, physical modeling requires a lot of parameters to synthesize a large number of sounds simultaneously for the musical instrument, preventing its real-time processing. To solve this problem, this paper proposes a single instruction, multiple data (SIMD) based multi-core processor that supports real-time processing of sound synthesis of gayageum which is a representative Korean traditional musical instrument. The proposed SIMD-base multi-core processor consists of 12 processing elements (PE) to control 12 strings of gayageum in which each PE supports modeling of the corresponding string. The proposed SIMD-based multi-core processor can generate synthesized sounds of 12 strings simultaneously after receiving excitation signals and parameters of each string as an input. Experimental results using a sampling reate 44.1 kHz and 16 bits quantization show that synthesis sound using the proposed multi-core processor was very similar to the original sound. In addition, the proposed multi-core processor outperforms commercial processors(TI's TMS320C6416, ARM926EJ-S, ARM1020E) in terms of execution time ($5.6{\sim}11.4{\times}$ better) and energy efficiency (about $553{\sim}1,424{\times}$ better).
Keywords
SIMD-Based Multi-Core Processor; Application-Specific Processor; Sound Synthesis; Physical Modeling; Digital Waveguide; Gayageum;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Xilinx Vertex-4 FPGA XC4VLX60 data sheet, http://www.alldatasheet.net/datasheet-pdf/pdf/152986/XILINX/XC4VLX60.html
2 N. Slingerland and A. J. Smith, “Measuring the performance of multimedia instruction sets,” IEEE Trans. on Computers, vol. 51, no. 11, pp. 1317-1332, Nov. 2002.   DOI   ScienceOn
3 Antonio Gentile, D. Scott Wills, “Portable Video Supercomputing,” IEEE Trans. Computers, vol. 53, no. 8, pp. 960-973, 2004.   DOI   ScienceOn
4 A. Krikelis, I. P. Jalowiecki, D. Bean, R. Bishop, M. Facey, D. Boughton, S. Murphy, and M. Whitaker, “A programmable processor with 4096 processing units for media applications,” in Proc. of the IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing, vol. 2, pp. 937-940, May. 2001.
5 L. W. Tucker and G. G. Robertson, “Architecture and applications of the connection machine,” IEEE Computer, vol. 21, no. 8, pp. 26-38, 1988.   DOI   ScienceOn
6 “Connection machine model CM-2 technical summary,” Thinking Machines Corp., version 51, May 1989.
7 MarPar (MP-2) System Data Sheet. MarPar Corporation, 1993.
8 M. J. Irwin, R. M. Owens, "A Two-Dimensional, Distributed Logic Processor," IEEE Trans. on Computers, vol. 40, no. 10, pp. 1094-1101, 1991.   DOI   ScienceOn
9 M. Bolotski, R. Armithrajah, W. Chen, "ABACUS: A High Performance Architecture for Vision," in Proceedings of the International Conference on Pattern Recognition, 1994.
10 J. O. Smith, "Efficient synthesis of stringed musical instruments," Proc. International Computer Music Conference, pp.74-91. Sep., 1993.
11 S. M. Chai, T. Taha, D. S. Wills, J. D. Meindl, "Heterogeneous Architecture Models for Interconnect-Motivated System Design," IEEE Trans. on VLSI Systems, vol. 8, no. 6, pp. 660-670, 2000.   DOI   ScienceOn
12 V. Tiwari, S. Malik, and A. Wolfe, "Complilation techniques for Low Energy: An Overview," in Proc. IEEE Intl. Symp. on Low Power Electrin., pp. 38-39, 1994.
13 V. Valimaki, J. Huopaniemi, M. Karjalainen, and Z. Janosy, "Physical modeling of plucked string instruments with application to real-time sound synthesis," J. Audio Eng. soc., vol. 44, no. 5, pp. 331-353, 1996.
14 M. Karjalainen, J. Backman, and J. Polkki, "Analysis, modeling, and real-time sound synthesis of the kantele, a traditional finnish string instrument," in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, pp. 229-232, 1993.
15 조상진, 정의필, “산조 가야금의 물리적 모델링”, 한국음향학회지, 제23권, 제7호, pp. 521-531, 2004.   과학기술학회마을
16 조상진, 정의필, “개선된 산조 가야금의 물리적 모델링을 이용한 오른손 주법의 음 합성”, 한국음향학회지, 제25권, 제8호, pp. 325-332, 2006.   과학기술학회마을
17 Luong Van Huynh, 김철홍, 김종면, "퍼지 백터 양자화를 위한 대규모 병렬 알고리즘 “, 한국정보처리학회논문지 A, 제16-A권, 제6호, pp. 411-418, 2009년 12월
18 유준희, “편경의 진동모드 분석”, 한국음향학회지, 제25권, 제3호, pp. 21-28, 2006.   과학기술학회마을
19 강명수, 조상진, 정의필, “물리적 모델링 합성법에 기반을 둔 줄 없는 기타 구현”, 한국음향학회지, 제28권, 제2호, pp. 119-126, 2009.   과학기술학회마을
20 U. P. Chong and S. J. Cho, "Physical modeling of gayageum with application to sound engine in musical synthesizer," in Proc. Int. Conf. High Performance Scientific Computing, 2006.
21 P. Ranganathan, S. Adve, and N. P. Jouppi, “Performance of image and video processing with general-purpose processors and media ISA extensions," in Proc. of the 26th Intl. Sym. on Computer Architecture, pp. 124-135, May. 1999.
22 R. Bhargava, L. John, B. Evans, and R. Radhakrishnan, “Evaluating MMX technology using DSP and multimedia applications,” in Proc. of IEEE/ACM Sym. on Microarchitecture, pp. 37-46, 1998.
23 H. G. Alles, "Music synthesis using real time digital techniques," Proc. IEEE, vol. 68, no. 4, pp. 436-449, 1980.   DOI   ScienceOn
24 홍연우, 조상진, 김종면, 정의필, "캡스트럼 포락선을 이용한 해금 소리의 포만트 합성", 한국음향학회지, 제28권, 제6호, pp.526-533, 2009년 8월.   과학기술학회마을
25 전희성, Pranab K. Dhar, 김철홍, 김종면, "수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성", 한국정보처리학회 논문지, 제17권, 제1호, 69-78페이지, 2010년 2월.   과학기술학회마을   DOI   ScienceOn
26 J. O. Smith, "Physical modeling using digital waveguides," Computer Music J., vol 16, no. 4, pp. 74-87, 1992.   DOI
27 A. W. Y. Su, W.-C. Chang, and R.-W. Wang, "IIR synthesis method for plucked-string instruments with embedded portamento," J. Audio Eng. soc., vol. 50, no. 5, pp. 351-362, 2002.