SiC composite materials are usually used to very high temperature condition such as thermal protection system materials at space vehicles, combustion chambers or engine nozzles because they have high specific strength and good thermal properties at high temperature. One of the most widely used fabrication methods of SiC composites is the chemical vapor infiltration (CVI) process. During the process, chemical gases including Si are introduced into porous preform which is made by carbon fibers for infiltration. Since the processes take a very long time, it is important to reduce the process time in designing the reactors and processes. In this study, both the gas flow and heat transfer in the reactors during the processes are analyzed using a computational fluid dynamics method in order to design reactors and processes for uniform, high quality SiC composites. Effects of flow rate and heater temperature as process parameters to the infiltration process were examined.
The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.
SI process is one of the most advanced thermochemical water splitting cycles enabling mass production of hydrogen without emitting carbon dioxide when coupled to nuclear heat energy. The highest temperature (close to $1000^{\circ}C$) required in SI process is well matched with the outlet temperature of a coolant circulating a high-temperature gas-cooled reactor at around $950^{\circ}C$. In Section 3, some heat exchangers are included to recover heats from process flows at high temperature. In this work, we designed a heat exchanger based on the $1Nm^3/hr$$H_2$ production capacity using commercial tools for chemical process design.
It is clear that monocrystalline Silicon (Si) ingots are the key raw material for semiconductors devices. In the present industries markets, most of monocrystalline Silicon (Si) ingots are made by Czochralski Process due to their advantages with low production cost and the big crystal diameters in comparison with other manufacturing process such as Float-Zone technique. However, the disadvantage of Czochralski Process is the presence of impurities such as oxygen or carbon from the quartz and graphite crucible which later will resulted in defects and then lowering the efficiency of Si wafer. The heat transfer plays an important role in the formation of Si ingots. However, the heat transfer generates convection in Si molten state which induces the defects in Si crystal. In this study, a crystal growth simulation software was used to optimize the Si crystal growth process. The furnace and system design were modified. The results showed the melt-crystal interface shape can affect the Si crystal growth rate and defect points. In this study, the defect points and desired interface shape were controlled by specific crystal growth rate condition.
초고속 RF IC의 핵심소자인 SiGe 에피텍시층을 가진 이종양극트란지스터(hetero junction bipolar transistor: HBT)를 0.35㎛급 Si-Ge BiCMOS공정으로 제작하였다. 낮은 VBE영역에서의 current gain의 선형성을 향상시키기 위하여 SiGe에피텍시층의 결함밀도를 감소시킬 수 있는 캐핑실리콘의 두께와 EDR온도의 최적화 공정조건을 알아보았다. 캐핑 실리콘의 두께를 200Å과 300Å으로 나누고 초고속 무선통신에서 요구되는 낮은 노이즈를 위한 EDR(Emitter Drive-in RTA)의 온도와 시간을 900-1000℃, 0-30 sec로 각각 변화시키면서 최적조건을 확인하였다. 실험범위 내에서의 최적공정조건은 300Å의 capping 실리콘과 975℃-30sec의 EDR 조건을 확인하였다.
The Ti3SiC2 MAX phase was synthesized by arc-melting process under three different processing times. We confirmed that the reaction between the TiCX phase and Ti-Si liquid phase is important for the synthesis of the Ti3SiC2 MAX phase. Results suggest that the Ti3SiC2 MAX phase decomposed when the arc-melting time was greater than 80s. Herein, we aim to determine the detailed parameters for the reported arc-melting process, which can provide useful insights on the synthesis of the Ti3SiC2 MAX phase by arc-melting process. Furthermore, we compared the electrical characteristics and densities of the three samples.
Based on the improvement in reinforcing SiC fibers and the utilization of very fine nano-SiC powders, the well known liquid phase sintering (LPS) process was drastically improved to become a new process called the Nano Infiltration and Transient Eutectic Phase (NITE) Process. Laboratory scale NITE-SiC/SiC composites demonstrated excellent mechanical properties, thermal conductivity, hermeticity and microstructure stability which made them attractive for not only energy application but many other industrial applications. For the real deployments of these materials, mass production system and evaluation methods, together with the design code and safety assurance systems are essential. The current efforts to establish these bases were introduced.
$SiC_f$/SiC composites were prepared using the hybrid process of chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP). Before the application of PIP, partially matrix-filled preform composites with different densities were fabricated by control of chemical vapor infiltration time and temperature. The changes of the final density of the $SiC_f$/SiC composites had a tendency similar to that of preform composites partially filled by CVI. Composites with lower density after the CVI process had a larger increment of density during the PIP process. Three types of microstructures were observed on the fractured surface of the composite: 1) well pulled-out fibers and lower density, 2) slightly pulled-out fibers and higher density, and 3) only bulk SiC. The different fractions and distributions of the microstructures could have an effect on the mechanical properties of the composites. In this study, $SiC_f$/SiC composites prepared using a hybrid process of CVI and PIP had density values in the range of $1.05{\sim}1.44g/cm^3$, tensile strength values in the range of 76.4 ~ 130.7 MPa, and fracture toughness values in the range of $11.2{\sim}13.5MPa{\cdot}m^{1/2}$.
Bosch 공정의 식각 단계에서 Ar을 첨가하였을 때 Si의 식각특성을 관찰하기 위하여 식각 단계에서 $SF_6$ 플라즈마만 사용한 경우와 Ar 유속비율이 20%인 $SF_6$/Ar 플라즈마를 각각 사용하여 Si을 Bosch 공정으로 식각하였다. Bosch 공정의 식각 단계에서 $SF_6$ 플라즈마에 Ar 가스를 첨가하면 $Ar^+$ 이온에 의한 이온포격이 증가하였고 이는 Si 입자의 스퍼터링을 초래할 뿐 아니라 F 라디칼과 Si의 화학반응을 가속하였다. 그 결과 식각 단계에서 20%의 Ar이 첨가되어 Bosch 공정으로 수행된 Si의 식각속도는 Ar이 첨가되지 않은 경우보다 10% 이상 빨라졌고 식각프로파일도 더욱 비등방적이었다. 이 연구의 결과는 Bosch 공정으로 Si을 식각할 때 식각속도와 식각프로파일의 비등방성을 개선하는데 필요한 기초자료로 사용될 수 있을 것으로 판단된다.
2.22-inch qVGA $(240{\times}320)$ amorphous silicon thin film transistor liquid active matrix crystal display (a-Si TFT-AMLCD) panel has been successfully demonstrated employing a 2.5 um fine-patterning technology by a wet etch process. Higher resolution 2.22-inch qVGA LCD panel with an aperture ratio of 58% can be fabricated as the 2.5 um fine pattern formation technique is integrated with high thermal photo-resist (PR) development. In addition, a novel concept of unique a-Si TFT process architecture, which is advantageous in terms of reliability, was proposed in the fabrication of 2.22-inch qVGA LCD panel. Overall results show that the 2.5 um fine-patterning is a considerably significant technology to obtain higher aperture ratio for higher resolution a-Si TFT-LCD panel realization.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.