Browse > Article
http://dx.doi.org/10.7849/ksnre.2022.2031

Passivating Contact Properties based on SiOX/poly-Si Thin Film Deposition Process for High-efficiency TOPCon Solar Cells  

Kim, Sungheon (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University)
Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Jeong, Sungjin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Cha, Yewon (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Kim, Hongrae (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Park, Somin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Ju, Minkyu (College of Information and Communication Engineering, Sungkyunkwan University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
New & Renewable Energy / v.18, no.1, 2022 , pp. 29-34 More about this Journal
Abstract
The most prevalent cause of solar cell efficiency loss is reduced recombination at the metal electrode and silicon junction. To boost efficiency, a a SiOX/poly-Si passivating interface is being developed. Poly-Si for passivating contact is formed by various deposition methods (sputtering, PECVD, LPCVD, HWCVD) where the ploy-Si characterization depends on the deposition method. The sputtering process forms a dense Si film at a low deposition rate of 2.6 nm/min and develops a low passivation characteristic of 690 mV. The PECVD process offers a deposition rate of 28 nm/min with satisfactory passivation characteristics. The LPCVD process is the slowest with a deposition rate of 1.4 nm/min, and can prevent blistering if deposited at high temperatures. The HWCVD process has the fastest deposition rate at 150 nm/min with excellent passivation characteristics. However, the uniformity of the deposited film decreases as the area increases. Also, the best passivation characteristics are obtained at high doping. Thus, it is necessary to optimize the doping process depending on the deposition method.
Keywords
Passivation; TOPCon; poly-Si; $SiO_x$; Deposition method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Richter, A., Benick, J., Feldmann, F., Fell, A., Hermle, M., and Glunz, S.W., 2017, "n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation", Sol. Energy Mater. Sol. Cells, 173, 96-105.   DOI
2 Kang, J., Liu, W., Allen, T., Bastiani, M.D., Yang, X., and Wolf, S.D., 2020, "Intrinsic silicon buffer layer improves hole-collecting poly-Si passivating contact" Adv. Mater. Interfaces, 7(13), 2000188.   DOI
3 Hoss, J., Baumann, J., Berendt, M., Graupner, U., Kohler, R., Lossen, J., Thumsch, M., and Schneiderlochner, E., 2019, "Sputtering of silicon thin films for passivated contacts", proceding of 15th international conference on concentrator photovoltaic systems (CPV-15), AIP Publishing LLC, 2147(1), 040007.
4 Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., and Ho-Baillie, A.W.Y., 2018, "Solar cell efficiency tables (version 53)", Prog. Photovoltaics Res. Appl., 27(1), 3-12.
5 Lee, C.H., Park, H.J., Song, H.Y., Lee, H.J., Ohshita, Y., Kang, Y.M., Lee, H.S., and Kim, D.H., 2019, "Passivation properties of phosphorus doped amorphous silicon layers for tunnel oxide carrier selective contact solar cell", Current Photovoltaic Research, 7(4), 125-129.   DOI
6 Kim, H.H., Bae, S.H., Ji, K.S., Kim, S.M., Yang, J.W., Lee, C.H., Lee, K.D., Kim, S.T., Kang, Y.M., Lee, H.S., and Kim, D.H., 2017, "Passivation properties of tunnel oxide layer in passivated contact silicon solar cells", Appl. Surf. Sci., 409, 140-148.   DOI
7 Park, H.J., Bae, S.H., Park, S.J., Hyun, J.Y., Lee, C.H., Choi, D.J., Kang, D.K., Han, H.B., Kang, Y.M., Lee, H.S., and Kim, D.H., 2019, "Role of polysilicon in poly-Si/SiO:X passivating contacts for high-efficiency silicon solar cells", RSC Advances, 9(40), 23261-23266.   DOI
8 Bonilla, R.S., Reichel, C., Hermle, M., and Wilshaw, P.R., 2013, "Electric field effect surface passivation for silicon solar cells", Solid State Phenomena, 205-206, 346-351   DOI
9 Park, H.J., Lee, Y.S., Park, S.J., Bae, S.H., Kim, S.H., Oh, D.H., Park, J.J., Kim, Y.G., Guim, H.U., and Kang Y.M., et al., 2019, "Tunnel oxide passivating electron contacts for high-efficiency n-type silicon solar cells with amorphous silicon passivating hole contacts", Prog. Photovoltaics Res. Appl., 27(12), 1104-1114   DOI
10 Yan, D., Cuevas, A., Phang, S.P., Wan, Y., and Macdonald, D., 2018, "23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films", Appl. Phys. Lett., 113(6), 061603.   DOI
11 Li, S., Pomaska, M., Hoss, J., Lossen, J., Qiu, K., Hong, R., Finger, F., Rau, U., and Ding, K., 2020, "High-quality amorphous silicon thin films for tunnel oxide passivating contacts deposited at over 150 nm/min", Prog. Photovoltaics Res. Appl., 29(1), 16-23
12 Yan, D., Cuevas, A., Bullock, J., Wan, Y., and Samundsett, C., 2015, "Phosphorus-diffused poly silicon contacts for solar cells", Sol. Energy Mater. Sol. Cells, 142, 75-82   DOI
13 Limodio, G., Yang, G., Groot, Y.D., Procel, P., Mazzarella, L., Weber, A.W., Isabella, O., and Zeman, M., 2020, "Implantation-based passivating contacts for crystalline silicon front/rear contacted solar cells", Prog. Photovoltaics Res. Appl., 28(5), 403-416.   DOI
14 Yan, D., Phang, S.P., Wan, Y., Samundsett, C., Macdonald, D., and Cuevas, A., 2019, "High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion", Sol. Energy Mater. Sol. Cells, 193, 80-84.   DOI
15 Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., and Ho-Baillie, A.W.Y., 2019, "Solar cell efficiency tables (version 54)", Prog. Photovoltaics Res. Appl., 27(7), 565-575   DOI
16 Nasebandt, L., Hubner, S., Min, B., Hollemann, C., Dippell, T., Wohlfart, P., Peibst, R., and Brendel, R., 2020, "Firedonly passivating poly-Si on oxide contacts with DC-sputtered in-situ phosphorous-doped silicon layers" proceding of 37th European photovoltaic solar energy conference and exhibition, 184-187.
17 Tao, K., Li, Q., Hou, C., Jiang, S., Wang, J., Jia, R., Sun, Y., Li, Y., Jin, Z., and Liu, X., 2017, "Application of a-Si/μc-Si hybrid layer in tunnel oxide passivated contact n-type silicon solar cells", Sol. Energy, 144, 735-739.   DOI
18 Mitra, S., Ghosh, H., Saha, H., and Ghosh, K., 2019, "Recombination analysis of tunnel oxide passivated contact solar cells", IEEE Trans Electron Devices, 66 (3), 1368-1376.   DOI
19 Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Mishima, T., and Matsubara, N., et al., 2014, "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell", IEEE J. Photovolt., 4(6), 1433-1435.   DOI
20 Larionova, Y., Turcu, M., Reiter, S., Brendel, R., Tetzlaff, D., Krugener, J., Wietler, T., Hohne, U., Kahler, J.D., and Peibst, R., 2017, "On the recombination behavior of p+-type polysilicon on oxide junctions deposited by different methods on textured and planar surfaces", Phys. Status. Solidi Appl. Mater. Sci., 214(8), 1700058.   DOI
21 Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., and Yamamoto, K., 2017, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%", Nat. Energy, 2, 17032   DOI
22 Feldmann, F., Bivour, M., Reichel, C., Steinkemper, H., Hermle, M., and Glunz, S.W., 2014, "Tunnel oxide passivated contacts as an alternative to partial rear contacts", Sol. Energy Mater. Sol. Cells, 131, 46-50.   DOI
23 Tao, Y., Upadhyaya, V., Jones, K., and Rohatgi, A., 2016, "Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity", AIMS Mater. Sci., 3(1), 180-189.   DOI
24 Fong, K.C., Kho, T.C., Liang, W.S., Chong, T.K., Ernst, M., Walter, D., Stocks, M., Franklin, E., McIntosh, K., and Blakers, A., 2018, "Phosphorus diffused LPCVD polysilicon passivated contacts with in-situ low pressure oxidation", Sol. Energy Mater. Sol. Cells, 186, 236-242.   DOI
25 Chowdhury, S., Kumar, M., Dutta, S., Park, J.S., Kim, J.M., Kim, S.Y., Ju, M.G., Kim, Y.K., Cho, Y.H., Cho, E.C., and Yi, J.S., 2019, "High-efficiency crystalline silicon solar cells: a review", New. Renew. Energy, 15(3), 36-45.   DOI
26 Truong, T.N., Yan, D., Nguyen, C.P.T., Kho, T., Guthrey, H., Seidel, J., Al-Jassim, M., Cuevas, A., Macdonald, D., and Nguyen, H.T., 2021, "Morphology, microstructure, and doping behaviour: A comparison between different deposition methods for poly-Si/SiOx passivating contacts", Prog. Photovolt., 29(7), 857-868.   DOI