• Title/Summary/Keyword: SERS spectroscopy

Search Result 40, Processing Time 0.019 seconds

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

Size control of Au nanoparticles by pH and effect of surface enhanced raman spectroscopy (SERS) (pH에 의한 골드나노입자의 사이즈 조절과 표면라만증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.379-382
    • /
    • 2019
  • Synthesis of gold nanoparticles (NPs) made an aqueous environment via the reduction of HAuCl4 by ascorbic acid (AC) with the surfactant of polyvinylpyrrolidone (PVP). Highly monodisperse gold particles with size ranges from 4 to 20 nm were prepared in high-yield by pH control. The synthesized gold nanoparticles were analyzed for structural and optical properties using transmission electron microscopy (TEM) and UV-vis spectroscopy. In this study, we could reveal that the prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties, and their SERS activities depends on size.

Copper micro/nanostructures as effective SERS active substrates for pathogen detection

  • Ankamwar, Balaprasad;Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • Surface-Enhanced Raman Scattering (SERS) spectroscopy is a multifaceted surface sensitive methodology which exploits spectroscopy-based analysis for various applications. This technique is based on the massive amplification of Raman signals which were feeble previously in order to use them for appropriate identification at qualitative and quantitative in chemical as well as biological systems. This novel powerful technique can be utilized to identify pathogens such as bacteria and viruses. As far as SERS is concerned, one of the most studied problems has been functionalization of SERS active substrate. Metal colloids and nanostructures or microstructures synthesized using noble metals such as Au, Ag and Cu are considered to be SERS active. Silver and gold are extensively used as SERS active substrates due to chemical inertness and stability in air compare to copper. However, use of Cu as a suitable alternative has been taken into account as it is cheap. Herein, we have synthesized air-stable copper microstructures/nanostructures by chemical, electrochemical and microwave-assisted methods. In this paper, we have also discussed the use of as synthesized copper micro/nanostructures as inexpensive yet effective SERS active substrates for the fast identification of micro-organisms like Staphylococcus aureus and Escherichia coli.

New Routes to the Preparation of Silver-Doped Sol-Gel Films for a SERS Study

  • Kang, Jae-Soo;Lee, Chul-Jae;Kim, Mak-Soon;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1599-1604
    • /
    • 2003
  • New methods were developed to prepare silver-doped sol-gel films for surface-enhanced Raman spectroscopy (SERS) applications. First, silver ions were doped into a sol-gel matrix. The doped silver ions were reduced into corresponding silver metal particles by two reductive procedures; chemical reduction and thermal reduction. The SERS spectra of benzoic acid were used to demonstrate the SERS effect of the new substrates. The adsorption strength of benzoic acid adsorbed on differently reduced substrates was discussed. The possible adsorption form and the orientation of adsorbate were also discussed.

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • Park, Ji-Yun;Jang, Seok-Jin;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

A review on gold nanowire based SERS sensors for chemicals and biological molecules

  • Rashida Akter;Hyuck Jin Lee;Toeun Kim;Jin Woo Choi;Hongki Kim
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.201-210
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) has emerged as a powerful technique for detecting and analyzing chemical and biological molecules at ultra-low concentrations. The effectiveness of SERS largely depends on structures with sub-10 nm gaps, prompting the proposal of various nanostructures as efficient SERS-active platforms. Among these, single-crystalline gold nanowires (AuNWs) are particularly promising due to their large dielectric constants, well-defined geometries, atomically smooth surfaces, and surface plasmon resonance across the visible spectrum, which produce strong SERS enhancements. This review comprehensively explores the synthesis, functionalization, and application of Au NWs in SERS. We discuss various methods for synthesizing AuNWs, including the vapor transport method, which influences their morphological and optical properties. We also review practical applications in chemical and biosensing, showcasing the adaptability of Au NWs-based SERS platforms in detecting a range of analytes, from environmental pollutants to biological markers. The review concludes with a discussion on future perspectives that aim to enhance sensor performance and broaden application domains, highlighting the potential of these sensors to revolutionize diagnostics and environmental monitoring. This review underscores the transformative impact of AuNW-based SERS sensors in analytical chemistry, environmental science, and biomedical diagnostics, paving the way for next-generation sensing technologies.

Synthesis of Size Controlled Gold Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) Effect (크기가 조절된 골드 나노 입자의 합성과 표면 라만 증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.462-465
    • /
    • 2019
  • Nanoscale gold particles have been intensively researched due to their potential applications in catalysis, electronics, plasmonics, and biological assays. In our study, we fabricated gold nanoparticles (NPs) that were synthesized in an aqueous environment via the reduction of $HAuCl_4$ by ascorbic acid (AC) with a sodium citrate (SC) surfactant. Highly monodispersed gold particles with sizes ranging from 123 to 184 nm were prepared in high-yield by a surfactant concentration. The structural and optical properties of the synthesized gold nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. The prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties that were dependent on their on size.

Synthesis of Size-Controlled Urchin Ag Nanoparticles and Surfcace Enhanced Raman Spectroscopy (SERS) (크기가 조절된 성게 모양의 실버나노 입자의 합성과 표면 라만 증강)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.454-457
    • /
    • 2019
  • Controlling the shape of Ag nanoparticles (NPs) is very difficult. In the present work, urchin Ag NPs with different sizes and pod length control have been synthesized successfully in high yield by the concentration of a reducing agent. Unique Ag NPs were observed by TEM and SEM. These nanocrystals exhibit tunable surface plasmon resonance properties from the visible to near-infrared regions. They were applied to surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G (R6G), benzenethiol (BT), and 4-amino benznethiol (4-ABT) molecules. The enhanced local field effect due to the sharp pod length, size, and surface plasmon of the urchin Ag NPs resulted in enhanced SERS properties and can serve as high-sensitivity substrates for SERS measurements.

CuO Nanograss as a Substrate for Surface Enhanced Raman Spectroscopy

  • Lee, Jun-Young;Park, Jiyun;Kim, Jeong-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.249-249
    • /
    • 2013
  • Surface-enhanced Raman spectroscopy (SERS) is a sensitive approach to detect and to identify a variety of molecules. To enhance the Raman signal, optimization of the gap between nanostructures is quite important. One-dimensional materials such as nanowires, nanotubes, and nanograsses have great potential to be used in SERS due to their unique sizes and shape dependent characteristics. In this study we investigate a simple way to fabricate SERS substrates based on randomly grown copper oxide (CuO) nanowires. CuO nanograss is fabricated on pre-cleaned Cu foils. Cu oxidized in an ammonium ambient solution of 2.5 M NaOH and 0.1 M $(NH_4)_2S_2O_8$ at $4^{\circ}C$ for 10, 30, and 60 minutes. Then, Cu(OH)2 nanostructures are formed and dried at $180^{\circ}C$ for 2 h. With the drying process, the Cu(OH)2 nanostructure is transformed to CuO nanograss by dehydration reaction. CuO nanograss are grown randomly on Cu foil with the average length of 10 ${\mu}m$ and the average diameter of a 100 nm. CuO nanograsses are covered by Ag with various thicknesses from 10 to 30 nm using a thermal evaporator. Then, we immerse uncoated and Ag coated CuO nanowire samples of various oxidation times in a 0.001M methanol-based 4-mercaptopyridine (4-Mpy) in order to evaluate SERS enhancement. Raman shift and SERS enhancement are measured using a Raman spectrometer (Horiba, LabRAM ARAMIS Spectrometer) with the laser wavelength of 532 nm. Raman scattering is believed to be enhanced by the interaction between CuO nanograss and Ag island film. The gaps between Ag covered CuO nanograsses are diverse from <10 nm at the bottom to ~200 nm at the top of nanograsses. SERS signal are improved where the gaps are minimized to near 10s of nanometers. There are many spots that provide sufficiently narrow gap between the structures on randomly grown CuO nanograss surface. Then we may find optimal enhancement of Raman signal using the mapping data of average results. Fabrication of CuO nanograss based on a solution method is relatively simple and fast so this result can potentially provide a path toward cost effective fabrication of SERS substrate for sensing applications.

  • PDF

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.