Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.6.454

Synthesis of Size-Controlled Urchin Ag Nanoparticles and Surfcace Enhanced Raman Spectroscopy (SERS)  

Lee, Young Wook (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Tae Ho (Energy & Environment Division, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.6, 2019 , pp. 454-457 More about this Journal
Abstract
Controlling the shape of Ag nanoparticles (NPs) is very difficult. In the present work, urchin Ag NPs with different sizes and pod length control have been synthesized successfully in high yield by the concentration of a reducing agent. Unique Ag NPs were observed by TEM and SEM. These nanocrystals exhibit tunable surface plasmon resonance properties from the visible to near-infrared regions. They were applied to surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G (R6G), benzenethiol (BT), and 4-amino benznethiol (4-ABT) molecules. The enhanced local field effect due to the sharp pod length, size, and surface plasmon of the urchin Ag NPs resulted in enhanced SERS properties and can serve as high-sensitivity substrates for SERS measurements.
Keywords
Urchin Ag nanoparticles; Size and pod control; SERS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.W. Cao, R. Jin, and C. A. Mirkin, Science, 297, 1536 (2002). [DOI: https://doi.org/10.1126/science.297.5586.1536]   DOI
2 Y. Zheng and W. Aiqin, J. Mater. Chem., 22, 16552 (2012). [DOI: https://doi.org/10.1039/C2JM32774K]   DOI
3 N. Pradhan, A. Pal, and T. Pal, Langmuir, 17, 1800 (2001). [DOI: https://doi.org/10.1021/la000862d]   DOI
4 W. Ren, Y. Fang, and E. Wang, ACS Nano, 5, 6425 (2011). [DOI: https://doi.org/10.1021/nn201606r]   DOI
5 T. K. Sau and C. J. Murphy, J. Am. Chem. Soc., 126, 8648 (2004). [DOI: https://doi.org/10.1021/ja047846d]   DOI
6 H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner, and C. Haisch, Anal. Chem., 86, 1525 (2014). [DOI: https://doi.org/10.1021/ac402935p]   DOI
7 S. Mondal, U. Rana, and S. Malik, ACS Appl. Mater. Interfaces, 7, 10457 (2015). [DOI: https://doi.org/10.1021/acsami.5b01806]   DOI
8 B. Wiley, Y. Sun, B. Mayers, and Y. Xia, Chem. Eur. J., 11, 454 (2005). [DOI: https://doi.org/10.1002/chem.200400927]   DOI
9 Y. Xiong and Y. Xia, Adv. Mater., 19, 3385 (2007). [DOI: https://doi.org/10.1002/adma.200701301]   DOI
10 J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao, W. Xu, J. Chang, and J. R. Lombardi, Langmuir, 24, 10407 (2008). [DOI: https://doi.org/10.1021/10.1002/adma.200701301]   DOI
11 T.T.B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, J. Mater. Chem. B, 2, 629 (2014). [DOI: https://doi.org/10.1039/C3TB21278E]   DOI
12 K. Kim, K. L. Kim, D. Shin, J. Y. Choi, and K. S. Shin, J. Phys. Chem. C, 116, 4774 (2012). [DOI: https://doi.org/10.1021/jp211730r]   DOI