• Title/Summary/Keyword: SEPIC converter.

Search Result 46, Processing Time 0.028 seconds

Development of Self Oscillating Electronic Ballast for Fluorescent Lamp Using SEPIC Converter (SEPIC 컨버터를 이용한 형광등용 자려 발진형 전자식 안정기 개발)

  • 김왕식;한재현;조계현;박종연
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.20-25
    • /
    • 2003
  • This paper presents the PFC method for an electronic ballast using SEPIC converter. Generally, the Boost Converter Type PFC has a DC 400V and output voltage is a bigger than input rms voltage. But the SEPIC type converter has above 0.95 Power Factor and wanted output voltage. This paper employs the SEPIC(Single Ended Primary Inductance Converter) Converter for PFC and the Ring core for oscillating method. Consequently, We reduced element's size and capacity in a converter with minimum voltage for the operating lamp.

A Fuel Cell Generation System with a New Active Clamp Sepic-Flyback Converter

  • Lee, Won-Cheol;Jang, Su-Jin;Kim, Soo-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.26-35
    • /
    • 2009
  • A high efficiency active clamp sepic-flyback converter is presented for fuel cell generation systems. The proposed converter is a superposition of a sepic converter mode and. flyback converter mode. The output voltages of the sepic converter mode and flyback converter mode can be regulated by the same PWM technique with constant frequency. By merging the sepic and flyback topologies, they can share the transformer, power MOSFET and active clamp circuit. The result has outstanding advantages over conventional active clamp DC-DC converters: high efficiency, high power density, and component utilization. Simulation results and experimental results are presented to verify the principles of operation for the proposed converter.

Three-Level SEPIC with Improved Efficiency and Balanced Capacitor Voltages

  • Choi, Woo-Young;Lee, Seung-Jae
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.447-454
    • /
    • 2016
  • A single-ended primary-inductor converter (SEPIC) features low input current ripple and output voltage up/down capability. However, the switching devices in a two-level SEPIC suffer from high voltage stresses and switching losses. To cope with this drawback, this study proposes a three-level SEPIC that uses a low voltage-rated switch and thus achieves better switching performance compared with the two-level SEPIC. The three-level SEPIC can reduce switch voltage stresses and switching losses. The converter operation and control method are described in this work. The experimental results for a 500 W prototype converter are also discussed. Experimental results show that unlike the two-level SEPIC, the three-level SEPIC achieves improved power efficiency with balanced capacitor voltages.

Non-isolated Bidirectional Soft-switching SEPIC/ZETA Converter with Reduced Ripple Currents

  • Song, Min-Sup;Son, Young-Dong;Lee, Kwang-Hyun
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.649-660
    • /
    • 2014
  • A novel non-isolated bidirectional soft-switching SEPIC/ZETA converter with reduced ripple currents is proposed and characterized in this study. Two auxiliary switches and an inductor are added to the original bidirectional SEPIC/ZETA components to form a new direct power delivery path between input and output. The proposed converter can be operated in the forward SEPIC and reverse ZETA modes with reduced ripple currents and increased voltage gains attributed to the optimized selection of duty ratios. All switches in the proposed converter can be operated at zero-current-switching turn-on and/or turn-off through soft current commutation. Therefore, the switching and conduction losses of the proposed converter are considerably reduced compared with those of conventional bidirectional SEPIC/ZETA converters. The operation principles and characteristics of the proposed converter are analyzed in detail and verified by the simulation and experimental results.

New SEPIC-Flyback Converter for Boost type Converter (승압형으로 동작하는 새로운 SEPIC-Flyback 컨버터)

  • Mun S. P.;Kim S. S.;Kang K. S.;Won C. Y.;Kim Y. R.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.330-334
    • /
    • 2004
  • A new SEPIC-Flyback converter is proposed. The proposed converter is the integration of SEPIC and Flyback converter. Not only SEPIC output but also Flyback output could be fully regulated by constant frequency PWM control. Merged SEPIC and Flyback topology can share the transformer and power MOSFET. When the switch turns on, one topology operates via capacitive energy transfer. The other topology acts as inductive energy transfer while the switch is off. So, it can increase power density per one cycle. The experimental result is presented and verified.

  • PDF

The operating characteristics of novel SEPIC-Flyback converter (새로운 SEPIC-Flyback 컨버터의 동작특성)

  • Mun, Seung-Pil;Kim, Soo-Seok;Lee, Tae-Won;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.526-529
    • /
    • 2004
  • A new SEPIC-Flyback convater is proposed. The proposed converter is the superposition of SEPIC and Flyback converter. Not only SEPIC output but also Flyback output could be fully regulated by constant frequency PWM control. Merged SEPIC and Flyback topology could share the transformer and power MOSFET. When the switch turns of one topology operates via capacitive energy transfer. Another topology acts as powering mode while the switch is off. So, it could increase power falsify per one cycle. The operating principle of the proposed converter is described below. Prototype featuring 24V input 48V output, 100kHz switching frequency, and 100W output is simulated under the proposed topology.

  • PDF

Electronic Ballast of High Power Factor Using SEPIC Converter for Electrodeless Fluorescent Lamps (SEPIC 컨버터를 이용한 무전극형광램프용 고역률 전자식 안정기)

  • 장도현;주형종;권명일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.285-293
    • /
    • 2004
  • In this Paper the electronic ballast using the SEPIC(Single Ended Primary Inductor Converter) converter for the multiple electrodeless fluorescent lamps is proposed, which has the structure of the active PFC and self oscillating function. The SEPIC converter system has the characteristics of the power factor with low input current harmonic distortion. The proposed control method is based on the aveage-current-mode using the dedicated integrated circuit UC3854. The proposed electronic ballast has the reduction effect for the energy and manufacturing cost because it is designed for tripple electrodeless fluorescent lamps. The experimental results shows that the power factor is higher and the THD is lower.

The Photovoltaic Power Generation System with SEPIC-Flyback Converter (태양광 발전용 SEPIC-Flyback 컨버터)

  • Jung, Doo-Yong;Jang, Su-Jin;Ji, Yong-Hyuk;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.49-52
    • /
    • 2007
  • In this paper, we proposed a design photovoltaic generation systems with SEPIC-Flyback converter. The SEPIC-Flyback converter is operated to SEPIC converter the state turn-on of the switch and the state turn-off the switch is operated Flyback converter. Therefore application rate of the core increases and voltage stress of switch and transformer decreases with active clamp operation. Also we performed MPPT(Maximum Power Point Tracking) control for efficient working of Photovoltaic Dower generation system.

  • PDF

Implementation of a Sliding Mode Controller for Single Ended Primary Inductor Converter

  • Subramanian, Venkatanarayanan;Manimaran, Saravanan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.39-53
    • /
    • 2015
  • This paper presents the regulation of the output voltage and inductor currents in a Single Ended Primary Inductor Converter (SEPIC), operating in the continuous conduction mode (CCM) using a sliding mode controller. Owing to the time varying nature of the SEPIC converter, designing a feedback controller is a challenging task. In order to improve the dynamic performance of the SEPIC, a Sliding Mode Controller (SMC) is developed. The developed SMC is designed by using a state space average model. The performance of the developed controller with the SEPIC converter is validated at different working conditions through Matlab simulations. It is also compared with the performance while using a PI controller. The results show that the designed controller gives very good output voltage regulation under different operating conditions such as a varying input voltage, changes in the load and component variations. A 48V, 46W experimental setup for has been developed in an analog platform to validate the performance of the proposed SMC.

Characteristics Analysis of PWM SEPIC AC-AC Converter (3상 PWM SEPIC AC-AC 컨버터의 특성해석)

  • Choi Nam-Sup
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1158-1160
    • /
    • 2004
  • In this paper, a PWM SEPIC AC-AC converter for VVCF applications such as AC line conditioner, phase shifter is presented. The PWM SEPIC AC-AC converter is modelled by using complex circuit DQ transformation whereby the characteristics equations such as voltage gain and input power factor is analytically obtained. Finally, the PSIM simulation shows the validity of the modelling and analysis.

  • PDF