Browse > Article
http://dx.doi.org/10.6113/JPE.2014.14.4.649

Non-isolated Bidirectional Soft-switching SEPIC/ZETA Converter with Reduced Ripple Currents  

Song, Min-Sup (Central R&D Institute, Samsung Electro-Mechanics)
Son, Young-Dong (Central R&D Institute, Samsung Electro-Mechanics)
Lee, Kwang-Hyun (Central R&D Institute, Samsung Electro-Mechanics)
Publication Information
Journal of Power Electronics / v.14, no.4, 2014 , pp. 649-660 More about this Journal
Abstract
A novel non-isolated bidirectional soft-switching SEPIC/ZETA converter with reduced ripple currents is proposed and characterized in this study. Two auxiliary switches and an inductor are added to the original bidirectional SEPIC/ZETA components to form a new direct power delivery path between input and output. The proposed converter can be operated in the forward SEPIC and reverse ZETA modes with reduced ripple currents and increased voltage gains attributed to the optimized selection of duty ratios. All switches in the proposed converter can be operated at zero-current-switching turn-on and/or turn-off through soft current commutation. Therefore, the switching and conduction losses of the proposed converter are considerably reduced compared with those of conventional bidirectional SEPIC/ZETA converters. The operation principles and characteristics of the proposed converter are analyzed in detail and verified by the simulation and experimental results.
Keywords
Bidirectional SEPIC/ZETA converter; Ripple current; Soft current commutation; Soft switching;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y.-P. Hsieh, J.-F. Chen, L.-S. Yang, C.-Y. Wu, and W.-S. Liu, "High-conversion-ratio bidirectional DC-dc converter with coupled inductor," IEEE Trans. Ind. Electron., Vol. 61, No. 1, pp. 210-222, Jan. 2014.   DOI
2 O. Garcia, P. Zumel, A. de Castro, and J. A. Cobos, "Automotive DC-DC bidirectional converter made with many interleaved buck stages," IEEE Trans. Power Electron., Vol. 21, No. 3, pp. 578-586, May. 2006.   DOI   ScienceOn
3 L. Ni, D. J. Patterson, and J. L. Hudgins, "High power current sensorless bidirectional 16-phase interleaved DC-DC converter for hybrid vehicle application," IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1141-1151, Mar. 2012.   DOI
4 J.-B. Baek, W.-I. Choi, and B.-H. Cho, "Digital adaptive frequency modulation for bidirectional DC-DC converter," IEEE Trans. Ind. Electron., Vol. 60, No. 11, pp. 5167-5176, Nov. 2013.   DOI
5 M. S. Song, E. S. Oh, and B. K. Kang, "Modified SEPIC having enhanced power conversion efficiency," Electron. Lett., Vol. 48, No. 18, pp. 1151-1153, Aug. 2012.   DOI   ScienceOn
6 E. Oh, M. S. Song, B. Kang, and Y. K. Park, "High-efficiency direct-linked zeta converter for LED backlight units," SID Symposium Digest of Technical Papers, pp. 1320-1323, 2011.
7 J. J. Jozwik and M. K. Kazimierczuk, "Dual sepic PWM switching-mode DC/DC power converter," IEEE Trans. Ind. Electron., Vol. 36, No. 1, pp. 64-70, Feb. 1989.   DOI   ScienceOn
8 R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Springer, pp. 15-22, 2001.
9 L. S. Yang and T. J. Liang, "Analysis and implementation of a novel bidirectional DC-DC converter," IEEE Trans. Ind. Electron., Vol. 59, No. 1, pp. 422-434, Jan. 2012.   DOI   ScienceOn
10 P. C. Todd, "Snubber circuits: Theory, design and application," Unitrode-Power Supply Design Seminar, pp. 2-1-2-17, 1993.
11 H. Tao, J. L. Duarte, and M. A. M. Hendrix, "Line-interactive UPS using a fuel cell as the primary source," IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3012-3021, Aug. 2008.
12 H. Wu, J. Lu, W. Shi, and Y. Xing, "Non-isolated bidirectional DC-DC converters with negative-coupled inductor," IEEE Trans. Power Electron., Vol. 27, No. 5, pp. 2231-2235, May 2007.
13 M. Kwon, J. Park, and S. Choi, "High gain soft-switching bidirectional DC-DC converters for eco-friendly vehicles," in Proc. IEEE APEC, pp. 1776-1782, 2013.
14 L. R. Chen, N. Y. Chu, C. S. Wang, and R. H. Liang, "Design of a reflex-based bidirectional converter with the energy recovery function," IEEE Trans. Ind. Electron., Vol. 55, No. 8, pp. 3022-3029, Aug. 2008.   DOI
15 D.-Y. Jung, S.-H. Hwang, Y.-H. Ji, J.-H. Lee, Y.-C. Jung, and C.-Y. Won "Soft-switching bidirectional DC/DC converter with a LC series resonant circuit," IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 1680-1690, Apr. 2013.   DOI
16 H.-L. Do, "Non-isolated bidirectional zero-voltageswitching DC-DC converter," IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2563-2569, Sep. 2011.
17 P. Jose and N. Mohan, "A novel ZVS bidirectional cuk converter for dual voltage systems in automobiles," Proc. IEEE IECON Conf. Rec., pp. 117-122, 2003.
18 I. D. Kim, S. H. Paeng, J. W. Ahn, E. C. Nho, and J. S. Ko, "New bidirectional ZVS PWM sepic/zeta DC-DC converter," in Proc. IEEE ISIE, pp. 555-560, 2007.
19 K. Jin , M. Yang , X. Ruan, and M. Xu, "Three-level bidirectional converter for fuel-cell/battery hybrid power system," IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 1976-1986, Jun. 2010.   DOI
20 W. Qian, H. Cha, Z. Fang, and L. M. Tolbert, "55-kW variable 3X DC-DC converter for plug-in hybrid electric vehicles," IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1668-1678, Apr. 2012.   DOI   ScienceOn
21 J. Cao and A. Emadi, "A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles," IEEE Trans. Power Electron., Vol. 27, No.1, pp. 122-132, Jan. 2012.   DOI
22 P. Das, S. A. Mousavi, and G. Moschopoulos, "Analysis and design of a non-isolated bidirectional ZVS-PWM DC-DC converter with coupled inductors," IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2630-2641, Oct. 2010.   DOI
23 M. Jain, M. Daniele, and P. K. Jain, "A bidirectional DC-DC converter topology for low power application," IEEE Trans. Power Electron., Vol. 15, No. 4, pp. 595-606, Jul. 2000.   DOI   ScienceOn
24 R. Singh and S. Mishra, "A magnetically coupled feedback-clamped optimal bidirectional battery charger," IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 422-432, Feb. 2013.   DOI
25 Z. Zhang, Z. Ouyang, O. C. Thomsen, and M. A. E. Andersen, "Analysis and design of a bidirectional isolated DC-DC converter for fuel cells and supercapacitors hybrid system," IEEE Trans. Power Electron., Vol. 27, No. 1, pp. 848-859, Feb. 2012.   DOI
26 A. K. Rathore and U. R. Prasanna, "Analysis, design, and experimental results of novel snubberless bi-directional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC Converter for fuel cell vehicles," IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4482-4491, Oct. 2013.   DOI   ScienceOn
27 N. M. L. Tan, T. Abe, and H. Akagi, "Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system," IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1237-1248, Mar. 2012.   DOI
28 C. G. Yoo, W.-C. Lee, K.-C. Lee, and B. H. Cho, "Transient current suppression scheme for bidirectional dc-dc converters in 42 V automotive power system," Journal of Power Electronics, Vol. 9, No. 4, pp.517 -525, Jul. 2009.