• Title/Summary/Keyword: SC 구조

Search Result 666, Processing Time 0.023 seconds

SC-FDE Design to Cope with Narrow Band Jammer (협대역 재머 대응을 위한 SC-FDE 구조 설계)

  • Ju, So-young;Jo, Sung-mi;Yu, Jeonghoon;Jeong, Eui-rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.614-616
    • /
    • 2017
  • In this paper, based on the conventional SC-FDE structure, we propose a new SC-FDE structure to cope with narrow band jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrow band jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain, and verified the performance via computer simulation.

  • PDF

An Experimental Study on Mechanical Properties of SC Beam Structure under Temperature Load (강판콘크리트(SC : Steel Plate Concrete) 보의 온도하중 재하 시 역학적 특성에 관한 실험연구)

  • Lee, Kyung Jin;Ham, Kyung Won;Park, Dong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.443-450
    • /
    • 2009
  • This paper describes the experimental study that was conducted on the temperature characteristic and bending capacity of a steel-plate-reinforced concrete-wall module (SC module). The steel plate ratio and temperature loading parameters were tested, and the influence of these parameters on the moment-curvature relationship and on the bending strength of the SC module was investigated. The fundamental-structure characteristic result of every SC module that assumed practical use was investigated. In this study, the bending and flexural characteristics of SC structures were evaluated to verify the yielding and ultimate strength of the SC beam under thermal-loading conditions.

An Experimental Study on Flexural Properties of SC(Steel Plate Concrete) Beam Structure with Reinforced Concrete Joint (철근 콘크리트 구조와 강판 콘크리트 구조(Steel Plate Concrete) 이질접합부를 가진 보의 휨 하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hahm, Kyung-Won;Park, Dong-Soo;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.455-463
    • /
    • 2010
  • This paper describes the experimental study on the mechanical characteristics of a steel plate-reinforced concrete joint. As an alternative reinforced concrete structure, the SC modular construction method is widely used and studied in the field ofindustrial facility field. However, the structure characteristics of RC and SC joint are not yet studied completely. In this paper, the beam-type construction joint of RC and SC walls was made to simulate the application of SC module to the large RC structure. Also, an out-of-plane loading was applied to the test specimen in order to evaluate flexural strength and structural properties of the beam-type RC-SC joint.

Damping Ratios for Seismic Design of SC Structures (SC구조의 내진설계를 위한 감쇠비)

  • Lee, Seung-Joon;Kim, Won-Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.487-496
    • /
    • 2010
  • The structural damping ratios for seismic design of nuclear power plant structures are specified in Regulatory guide 1.61 of the United States NRC for RC structures of 4%(OBE) and 7%(SSE), and for steel structures of 3%(OBE) and 4%(SSE), but not for steel-plate concrete (SC) structures that have been developed recently. The objective of this study is to investigate the damping ratios of SC structures by identifying the relative differences in the damping ratios between RC and SC structures. An experimental study was performed on four specimens, RC-S, RC-M, SC-S and SC-M, where S stands for shear-governed and M for moment-governed. The conducted method was free vibration testing by rupturing a brittle steel plate that linked the actuator and the mass center. The test results were analyzed to determine fundamental frequencies and damping ratios at various load levels. By examining the relative differences in damping ratios of four specimens, it is proposed for SC structures to use the same damping ratio of 4% as RC one at OBE, but 1% less damping ratio than RC one resulting in 6% at SSE.

Structural Damping Ratio of Steel Plate Concrete(SC) Shear Wall at the Low Stress Level Identified by Vibration Test (진동시험을 통한 강판콘크리트(SC) 전단벽의 저응력수준에서의 구조 감쇠비 규명)

  • Cho, Sung Gook;So, Gihwan;Kim, Doo Kie;Han, Sang Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.255-264
    • /
    • 2015
  • Steel plate concrete (SC) structure has been developed as a new structural type. Rational damping value shall be determined for the seismic design of SC structure. This study evaluated damping ratio of SC structure through experiments. For the study, a SC shear wall specimen was constructed and dynamically tested on the shaking table. Acceleration time history responses measured from testing were converted to the transfer functions and analyzed by using experimental modal analysis technique. The structural damping ratio of the specimen was identified as 4% to critical. Considering the shaking table test was performed at the excitation level corresponding to the low stress level of the specimen, 4% could be suggested as a structural damping for design of SC structure for operating basis earthquake.

Evaluation of Steel Plate Reinforced Concrete Panels under In-plane Shear (SC구조 평판의 면내전단내력 평가)

  • Lee, Myung Jae;Lee, Hyun Wook;Jin, Seong Chan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.571-581
    • /
    • 2008
  • The steel plate reinforced concrete structure(SC structure) is suggested for the reasons of the saving of construction period, the saving of manpower and the advantage of quality control. The objective of this study is to evaluate basic structural behavior of SC structure under pure shear load, and shear with axial load condition and to suggest the method of in-plane pure shear loading. From the test results, structural behaviors of SC structure under pure shear load and shear with axial load were investigated the combination of validity of pure shear loading method by using 4 hinge frames was verified.

Compression Behavior of Steel Plate-Concrete Structures with the Width-to-Thickness Ratio (폭두께비에 따른 강판콘크리트구조의 압축거동)

  • Han, Hong-Soo;Choi, Byong-Jeong;Han, Kweon-Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • This study was conducted to understand the characteristics of the compression behavior of steel plate-concrete(SC) structures with a width-to-thickness ratio under axial loading. SC structures are structural systems where concrete is poured into steel plates to which headed stud bolts had been attached inside. The specimens were classified according to the two width-to-thickness (W/T) ratios of 1.60 and 3.56. Through these experiments, the following conclusions could be arrived at. The fracture pattern of the specimens showed that steel plate buckling occurred between the stud lines, and that a crack occurred at the concrete spalling from the sides of the concrete before the system reached the maximum compressive strength. The maximum compressive strength of the specimens was larger than that of the existing equations (AISC 2005, ACI 318-05, and KBC 2005). With the increased W/T ratio of the specimens, the strength of the concrete core was decreased to account for the confinement effects from the steel plates.

Evaluation of Structural Capacity of SC Walls in Nuclear Power Plant accounting for the Area Lost to Openings (개구 저감률에 의한 원전 SC벽체의 내력 평가)

  • Chung, Chul-Hun;Jung, Raeyoung;Moon, Il Hwan;Lee, Jungwhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2181-2193
    • /
    • 2013
  • The shear wall with openings built with reinforced concrete(RC) have been elaborately studied by many researchers, whereas the steel plate concrete(SC) wall structure has not been investigated as much. Recent SC wall structures developed in Korea have been partly applied to nuclear power plant structures, although its design specification or guideline for the SC wall structure with openings has not been completed yet. This study based on the account for the area lost to openings evaluates the effects of opening on the structural capacity of the SC structure within nuclear power plant. The results obtained from the study on the area lost to openings have been compared with experimental and numerical studies.

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Overhead Reduction by Channel Estimation Using Linear Interpolation for SC-FDE Transmission (SC-FDE 전송 방식에서 선형 보간법을 이용한 채널추정으로 오버헤드 감소 방안)

  • Song, Min-Su;Kil, Haeng-Bok;Kim, Jaesin;Jeong, Eui-Rim
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.611-613
    • /
    • 2017
  • This paper proposes a new method to reduce the overhead by pilots for single carrier frequency domain equalization (SC-FDE) transmission. In the conventional SC-FDE transmission structure, the overhead by transmitting pilot are heavy because the pilot are transmitted at every SC-FDE block. The proposed SC-FDE structure has fewer pilots and many SC-FCE blocks are transmitted between pilots. The channel estimation and equalization is performed at the pilot period and the channels between pilots are estimated through linear interpolation. This reduces the pilot overhead by reducing the pilot transmission compared with the conventional structure, and enables reliable channel estimation and equalization.

  • PDF