• Title/Summary/Keyword: S-Generalized Gauss hypergeometric function

Search Result 24, Processing Time 0.02 seconds

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.745-758
    • /
    • 2011
  • Generalizing the Burchnall-Chaundy operator method, the authors are aiming at presenting certain decomposition formulas for the chosen six Exton functions expressed in terms of Appell's functions $F_3$ and $F_4$, Horn's functions $H_3$ and $H_4$, and Gauss's hypergeometric function F. We also give some integral representations for the Exton functions $X_i$ (i = 6, 8, 14) each of whose kernels contains the Horn's function $H_4$.

FUNCTIONAL RELATIONS INVOLVING SRIVASTAVA'S HYPERGEOMETRIC FUNCTIONS HB AND F(3)

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.187-204
    • /
    • 2011
  • B. C. Carlson [Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2) (1970), 232-242] presented several useful relations between Bessel and generalized hypergeometric functions that generalize some earlier results. Here, by simply splitting Srivastava's hypergeometric function $H_B$ into eight parts, we show how some useful and generalized relations between Srivastava's hypergeometric functions $H_B$ and $F^{(3)}$ can be obtained. These main results are shown to be specialized to yield certain relations between functions $_0F_1$, $_1F_1$, $_0F_3$, ${\Psi}_2$, and their products including different combinations with different values of parameters and signs of variables. We also consider some other interesting relations between the Humbert ${\Psi}_2$ function and $Kamp\acute{e}$ de $F\acute{e}riet$ function, and between the product of exponential and Bessel functions with $Kamp\acute{e}$ de $F\acute{e}riet$ functions.

REMARKS ON A SUMMATION FORMULA FOR THREE-VARIABLES HYPERGEOMETRIC FUNCTION $X_8$ AND CERTAIN HYPERGEOMETRIC TRANSFORMATIONS

  • Choi, June-Sang;Rathie, Arjun K.;Harsh, H.
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.481-486
    • /
    • 2009
  • The first object of this note is to show that a summation formula due to Padmanabham for three-variables hypergeometric function $X_8$ introduced by Exton can be proved in a different (from Padmanabham's and his observation) yet, in a sense, conventional method, which has been employed in obtaining a variety of identities associated with hypergeometric series. The second purpose is to point out that one of two seemingly new hypergeometric identities due to Exton was already recorded and the other one is easily derivable from the first one. A corrected and a little more compact form of a general transform involving hypergeometric functions due to Exton is also given.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

TWO RESULTS FOR THE TERMINATING 3F2(2) WITH APPLICATIONS

  • Kim, Yong-Sup;Choi, June-Sang;Rathie, Arjun K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.621-633
    • /
    • 2012
  • By establishing a new summation formula for the series $_3F_2(\frac{1}{2})$, recently Rathie and Pogany have obtained an interesting result known as Kummer type II transformation for the generalized hypergeometric function $_2F_2$. Here we aim at deriving their result by using a very elementary method and presenting two elegant results for certain terminating series $_3F_2(2)$. Furthermore two interesting applications of our new results are demonstrated.

ON CERTAIN REDUCIBILITY OF KAMPE DE FERIET FUNCTION

  • Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.167-176
    • /
    • 2009
  • The aim of this paper is to obtain three interesting results for reducibility of Kamp$\'{e}$ de $\'{e}$riet function. The results are derived with the help of contiguous Gauss's second summation formulas obtained earlier by Lavoie et al. The results obtained by Bailey, Rathie and Nagar follow special cases of our main findings.

NOTE ON THE CLASSICAL WATSON'S THEOREM FOR THE SERIES 3F2

  • Choi, Junesang;Agarwal, P.
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.701-706
    • /
    • 2013
  • Summation theorems for hypergeometric series $_2F_1$ and generalized hypergeometric series $_pF_q$ play important roles in themselves and their diverse applications. Some summation theorems for $_2F_1$ and $_pF_q$ have been established in several or many ways. Here we give a proof of Watson's classical summation theorem for the series $_3F_2$(1) by following the same lines used by Rakha [7] except for the last step in which we applied an integral formula introduced by Choi et al. [3].

ON BASIC ANALOGUE OF CLASSICAL SUMMATION THEOREMS DUE TO ANDREWS

  • Harsh, Harsh Vardhan;Rathie, Arjun K.;Purohit, Sunil Dutt
    • Honam Mathematical Journal
    • /
    • v.38 no.1
    • /
    • pp.25-37
    • /
    • 2016
  • In 1972, Andrews derived the basic analogue of Gauss's second summation theorem and Bailey's theorem by implementing basic analogue of Kummer's theorem into identity due to Jackson. Recently Lavoie et.al. derived many results closely related to Kummer's theorem, Gauss's second summation theorem and Bailey's theorem and also Rakha et. al. derive the basic analogues of results closely related Kummer's theorem. The aim of this paper is to derive basic analogues of results closely related Gauss's second summation theorem and Bailey's theorem. Some applications and limiting cases are also considered.

ANOTHER PROOF OF CLASSICAL DIXON'S SUMMATION THEOREM FOR THE SERIES 3F2

  • Kim, Insuk;Cho, Myunghyun
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.661-666
    • /
    • 2019
  • In this short research note, we aim to provide a new proof of classical Dixon's summation theorem for the series $_3F_2$ with unit argument. The theorem is obtained by evaluating an infinite integral and making use of classical Gauss's and Kummer's summation theorem for the series $_2F_1$.