• Title/Summary/Keyword: S/N boundary

Search Result 389, Processing Time 0.023 seconds

MULTI-POINT BOUNDARY VALUE PROBLEMS FOR ONE-DIMENSIONAL p-LAPLACIAN AT RESONANCE

  • Wang Youyu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.361-372
    • /
    • 2006
  • In this paper, we consider the multi-point boundary value problems for one-dimensional p-Laplacian at resonance: $({\phi}_p(x'(t)))'=f(t,x(t),x'(t))$, subject to the boundary value conditions: ${\phi}_p(x'(0))={\sum}^{n-2}_{i=1}{\alpha}_i{\phi}_p(x'({\epsilon}i)),\;{\phi}_p(x'(1))={\sum}^{m-2}_{i=1}{\beta}_j{\phi}_p(x'({\eta}_j))$ where ${\phi}_p(s)=/s/^{p-2}s,p>1,\;{\alpha}_i(1,{\le}i{\le}n-2){\in}R,{\beta}_j(1{\le}j{\le}m-2){\in}R,0<{\epsilon}_1<{\epsilon}_2<...<{\epsilon}_{n-2}1,\;0<{\eta}1<{\eta}2<...<{\eta}_{m-2}<1$, By applying the extension of Mawhin's continuation theorem, we prove the existence of at least one solution. Our result is new.

MULTIPLICITY OF POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL P-LAPLACIAN

  • Zhang, Youfeng;Zhang, Zhiyu;Zhang, Fengqin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1211-1220
    • /
    • 2009
  • In this paper, we consider the multipoint boundary value problem for the one-dimensional p-Laplacian $({\phi}_p(u'))'$(t)+q(t)f(t,u(t),u'(t))=0, t $\in$ (0, 1), subject to the boundary conditions: $u(0)=\sum\limits_{i=1}^{n-2}{\alpha}_iu({\xi}_i),\;u(1)=\sum\limits_{i=1}^{n-2}{\beta}_iu({\xi}_i)$ where $\phi_p$(s) = $|s|^{n-2}s$, p > 1, $\xi_i$ $\in$ (0, 1) with 0 < $\xi_1$ < $\xi_2$ < $\cdots$ < $\xi{n-2}$ < 1 and ${\alpha}_i,\beta_i{\in}[0,1)$, 0< $\sum{\array}{{n=2}\\{i=1}}{\alpha}_i,\sum{\array}{{n=2}\\{i=1}}{\beta}_i$<1. Using a fixed point theorem due to Bai and Ge, we study the existence of at least three positive solutions to the above boundary value problem. The important point is that the nonlinear term f explicitly involves a first-order derivative.

  • PDF

The study of Grain boundary diffusion effect in Tin/Cu by Xps (XPS를 이용한 TiN/Cu의 Grain boundary diffusion 연구)

  • 임관용;이연승;정용덕;이경민;황정남;최범식;원정연;강희재
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.112-117
    • /
    • 1998
  • TiN has been investigated as a good candidate for a diffusion barrier of Cu. Therefore, in this study, the grain boundary diffusion of Cu in TiN film was investigated by X-ray photoelectron spectroscopy(XPS). In general, TiN has a columnar grain structure. In the relatively lower temperature, less than 1/3 of the melting point, it was observed that Cu diffused into TiN mainly along the grain boundaries of TiN. The grain size of TiN was measured by atomic force microscope (AFM). In order to estimate the grain boundary diffusion constants, we used the modified surface accumulation method. The activation energy, $Q_b$ was 0.23 eV, and the diffusivity, $D_{bo}$ was $5.5\times10^{-12{\textrm{cm}^2$/sec.

  • PDF

SPHERES IN THE SHILOV BOUNDARIES OF BOUNDED SYMMETRIC DOMAINS

  • Kim, Sung-Yeon
    • The Pure and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.35-56
    • /
    • 2015
  • In this paper, we classify all nonconstant smooth CR maps from a sphere $S_{n,1}{\subset}\mathbb{C}^n$ with n > 3 to the Shilov boundary $S_{p,q}{\subset}\mathbb{C}^{p{\times}q}$ of a bounded symmetric domain of Cartan type I under the condition that p - q < 3n - 4. We show that they are either linear maps up to automorphisms of $S_{n,1}$ and $S_{p,q}$ or D'Angelo maps. This is the first classification of CR maps into the Shilov boundary of bounded symmetric domains other than sphere that includes nonlinear maps.

Average Walk Length in One-Dimensional Lattice Systems

  • Lee Eok Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.665-669
    • /
    • 1992
  • We consider the problem of a random walker on a one-dimensional lattice (N sites) confronting a centrally-located deep trap (trapping probability, T=1) and N-1 adjacent sites at each of which there is a nonzero probability s(0 < s < 1) of the walker being trapped. Exact analytic expressions for < n > and the average number of steps required for trapping for arbitrary s are obtained for two types of finite boundary conditions (confining and reflecting) and for the infinite periodic chain. For the latter case of boundary condition, Montroll's exact result is recovered when s is set to zero.

GEOMETRIC CHARACTERIZATION OF q-PSEUDOCONVEX DOMAINS IN ℂn

  • Khedhiri, Hedi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.543-557
    • /
    • 2017
  • In this paper, we investigate the notion of q-pseudoconvexity to discuss and describe some geometric characterizations of q-pseudoconvex domains ${\Omega}{\subset}{\mathbb{C}}^n$. In particular, we establish that ${\Omega}$ is q-pseudoconvex, if and only if, for every boundary point, the Levi form of the boundary is semipositive on the intersection of the holomorphic tangent space to the boundary with any (n-q+1)-dimensional subspace $E{\subset}{\mathbb{C}}^n$. Furthermore, we prove that the Kiselman's minimum principal holds true for all q-pseudoconvex domains in ${\mathbb{C}}^p{\times}{\mathbb{C}}^n$ such that each slice is a convex tube in ${\mathbb{C}}^n$.

AN INVERSE PROBLEM OF THE THREE-DIMENSIONAL WAVE EQUATION FOR A GENERAL ANNULAR VIBRATING MEMBRANE WITH PIECEWISE SMOOTH BOUNDARY CONDITIONS

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.81-105
    • /
    • 2003
  • This paper deals with the very interesting problem about the influence of piecewise smooth boundary conditions on the distribution of the eigenvalues of the negative Laplacian in R$^3$. The asymptotic expansion of the trace of the wave operator (equation omitted) for small |t| and i=√-1, where (equation omitted) are the eigenvalues of the negative Laplacian (equation omitted) in the (x$^1$, x$^2$, x$^3$)-space, is studied for an annular vibrating membrane $\Omega$ in R$^3$together with its smooth inner boundary surface S$_1$and its smooth outer boundary surface S$_2$. In the present paper, a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components (equation omitted)(i = 1,...,m) of S$_1$and on the piecewise smooth components (equation omitted)(i = m +1,...,n) of S$_2$such that S$_1$= (equation omitted) and S$_2$= (equation omitted) are considered. The basic problem is to extract information on the geometry of the annular vibrating membrane $\Omega$ from complete knowledge of its eigenvalues by analysing the asymptotic expansions of the spectral function (equation omitted) for small |t|.

SOLUTIONS OF STURM-LIOUVILLE TYPE MULTI-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.167-182
    • /
    • 2007
  • The existence of solutions of the following multi-point boundary value problem $${x^{(n)}(t)=f(t,\;x(t),\;x'(t),{\cdots}, x^{(n-2)}(t))+r(t),\;0 is studied. Sufficient conditions for the existence of at least one solution of BVP(*) are established. It is of interest that the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bounds of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

THE BOUNDARY BEHAVIOR BETWEEN THE KOBAYASHI-ROYDEN AND CARATHÉODORY METRICS ON STRONGLY PSEUDOCONVEX DOMAIN IN ℂn

  • KIM, JONG JIN;PARK, SUNG HEE
    • Honam Mathematical Journal
    • /
    • v.19 no.1
    • /
    • pp.81-86
    • /
    • 1997
  • The aim of this paper is to prove the boundary behavior between the Caratheodory and Kobayashi-Royden metrics in a strongly pseudoconvex bounded domain with $C^2$-boundary in $\mathbb{C}^n$ and to show that the converse does not holds. S. Venturini([Ven]) proved the corresponding result with distances in place of the infinitesimal metrics.

  • PDF