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GEOMETRIC CHARACTERIZATION OF ¢g-PSEUDOCONVEX
DOMAINS IN C™

HEDI KHEDHIRI

ABSTRACT. In this paper, we investigate the notion of g-pseudoconvexity
to discuss and describe some geometric characterizations of g-pseudo-
convex domains 2 C C™. In particular, we establish that  is g-pseudo-
convex, if and only if, for every boundary point, the Levi form of the
boundary is semipositive on the intersection of the holomorphic tangent
space to the boundary with any (n —g¢+1)-dimensional subspace £ C C".
Furthermore, we prove that the Kiselman’s minimum principal holds true
for all g-pseudoconvex domains in CP x C™ such that each slice is a convex
tube in C™.

1. Introduction

We study in this paper the notion of g-pseudoconvexity from a geometric
point of view. We consider smoothly g-pseudoconvex domains €2 in C™ which
are defined by smooth g-subharmonic function p such that dp # 0 on 0.
We will prove in Section 2 that, for g-pseudoconvex domains 2 C C™ such that
2 < q < n, the function — log d(z, CQ2) is g-subharmonic. Note that by taking in
account our convention about this notion, according to [5], this isn’t generally
the case for 1-pseudoconvex domains. By considering the function

(1.1) da(z, E) =sup{r >0, z+ Bg(r) C Q}.

which is the distance from z to 02 in the multi-complex direction supported
by a g¢-dimensional subspace E of C™, we obtain a new understanding of the
concept of g-pseudoconvexity. We will see here that the function — logd(z, ()
is one of the most important tools in studying g-pseudoconvexity. In addition,
We will show that the concepts of the weak g-pseudoconvexity and the strong
g-pseudoconvexity are equivalent and we say simply g¢-pseudoconvexity. By
using the function dq (z, E'), we legitimate the ¢g-pseudoconvexity of the Hartogs
domains when n > 2q + 2.
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In Section 3, we shall give a full rigorous proof of the local property of ¢-
pseudoconvexity, that differs of such given in [5]. Furthermore, we characterize
the g-pseudoconvexity by the Levy form of the defining function and we prove
that €2 is g-pseudoconvex, if and only if, for every boundary point, the Levi form
of the boundary is semi-positive on the intersection of the holomorphic tangent
space to the boundary with any (n — g + 1)-dimensional subspace E C C™.

In Section 4, we attempt to show that the Kiselman’s minimum principal
holds true for all g-pseudoconvex domains in CP x C" such that each slice is a
convex tube in C".

Now, let’s give the definition of a g-subharmonic function.

Definition 1.1. A function u : @ — [—oo0,+00[, u Z —o0, is called ¢-
subharmonic if for every (n — ¢ + 1)-dimensional complex subspace £ C C",
the restriction u|pnq is subharmonic. This means that for all compact set
K C ENQ and for every continuous harmonic function h on K such that
u < h on 0K, we have u < h on K.

Observe here that n-subharmonic functions are usual plurisubharmonic func-
tions and 1-subharmonic functions are usual subharmonic functions. Further
details about the notion of g-subharmonic functions and their properties can
be obtained from [5] or [8].

The set of g-subharmonic functions on © will be denoted ¢-Sh(€2).

Example 1.1. Consider in C" the Riez kernel [6], K(«,z) defined by the
expression
(1.2)
|Z|2(o¢—q) 7T2n22a1‘\(a)
H,(a) I'(q —a)
For every g-dimensional subspace E C C™, an easy computation far from the
origin of the Laplacian AK|p of the restriction on E of the function K(c,.)
defined by (1.2), yields up to a positive constant

(1.3) AK|p(a,z) = —K|g(a —1,2).

Then (1.3) implies that K is (n — ¢ + 1)-subharmonic on C". In case ¢ = n
and a = 1, K is the Newton kernel.

K(a,z) = where H,(a) = and 1<a<qg<n.

We may introduce the notion of a ¢-pseudoconvex domain in C™ where n > 2,
by considering an integer 1 < ¢ < n and a smoothly domain Q C C" with a
defining function p such that dp # 0 on 92 and we define this notion as the
following:

Definition 1.2. We say that (2 is g-pseudoconvex if there is a neighborhood
U of Q and a g-subharmonic function p : U — R U {—o0} such that dp # 0 on
90 and Q= {z € C" / p(z) < 0}.

Example 1.2. Consider an example of 3-pseudoconvex domain in C> = C3 x
C2, which is a variant of the Kohn-Nirenberg example [4] of a pseudoconvex



GEOMETRIC CHARACTERIZATION OF ¢-PSEUDOCONVEX DOMAINS IN C" 545

domain in C? :
Q={( zw) eC’; 3|xn]*— |,22|4 - |,23|4 + R(w) + |z|2]c + t|z|2§R(z%72) < 0}

where t € R and k € N, k > 2, are fixed parameters. We can easily check that
if |t| < %, then the restriction on every 3-complex subspace E C C, of the
defining function of Q given by p(z1, 22, 23, 2, w) = 3|21|? — | 22|* — | 23| * + R(w) +
|2|2% +t|2|?R(2%2#72) is subharmonic. Which means that € is a 3-pseudoconvex
domain in CP.

In [2], Dinh introduced the notion of p-pseudoconcavity of a closed subset
X of a complex manifold V' of dimension n > 2 as follows:

We say that X is p-pseudoconcave if for every open set U € V and every
holomorphic map f from a neighborhood of U into CP, we have f(X NU) C
CP \  where Q is the unbounded component of C? \ f(X N o).

As it is mentioned above, n-pseudoconvex domains are just the usual pseu-
doconvex domains which are domains of holomorphy with smooth boundary.
In addition, strictly ¢-pseudoconvex domains are defined at the boundary by
smooth strictly g-subharmonic functions.

Definition 1.3. A function u € ¢-Sh(Q2) is said to be strictly g-subharmonic
if u € L} (Q) and if for every point zo € Q there exist a neighborhood w of z

loc
and ¢ > 0 such that u — ¢|z|? is g-subharmonic in w.

Remark 1.1. By induction on 1 < k < ¢, we can show that a function v is
strictly g-subharmonic on 2 means that for every point xg € €2, there exist
¢ > 0 and a neighborhood w of zy such that

(dd°u)* A" F >¢f™ on w VEk=1,...,q,
where 3 is the Kahler form on C”.

Definition 1.4. Let Q@ C C" be an open subset and a function ¢ : Q —
[—00, +00[. Then 9 is said to be an exhaustion, if all sub-level sets Q. = {z €
Q /¥(z) < c}, c €R, are relatively compact. Furthermore, we say that

(1) Q is weakly g-pseudoconvex, if there exists a smooth g-subharmonic
exhaustion function 1 € ¢-Sh(Q) N €>°(Q);

(2) Q is strongly g-pseudoconvex, if there exists a smooth strictly g-sub-
harmonic exhaustion function ¢ € ¢-Sh(Q) N €< ().

The main results of this paper are the followings:

Theorem 2.2. Let 2 < g < n be a nonnegative integer, ) be an open subset
in C™ and E be a (n—q+1)-dimensional complex subspace. Then the following
properties are equivalent:

(1) Q is strongly q-pseudoconver;
(2) Q is weakly q-pseudoconvex;
(3) Q has a g-subharmonic exhaustion function;
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(4) the function (z,&1,...,6n—qt1) = —logda(z,&1,. .. Engy1) s q-sub-
harmonic on Q x En—atl
(5) the function z — —logd(z,0Q) is g-subharmonic on .

Theorem 3.2. Let 2 < ¢ < n be a nonnegative integer. An open subset
Q C C™ with smooth boundary is q-pseudoconvezx, if and only if, for every
(n—q+1)-dimensional complex subspace E C C™, the Levi form LaﬂvZ\EthaQ .
is semi-positive at every point of OS2. Y

In case ¢ = n, Theorem 2.2 and Theorem 3.2 were proved in [1].

Theorem 4.1. Let 2 = x Qo C CP x C™ be a g-pseudoconver domain such
that each slice

Qe={z€C" ((,2)€Q}, (eC?
is a convex tube we + iIR™, we C CP. Then, for every g-subharmonic function
v((,2) on Q that does not depend on (z), the function u(¢) = inf,cq, v((, 2)
is q-subharmonic or locally = —oo on Qg = pren ().

In case ¢ = n, Theorem 4.1 was proved in [3].

2. Geometric characterizations of g-pseudoconvex domains

In this section, we will discuss some characterizations of g-pseudoconvex
domains in C".

Let E C C™ be a ¢g-dimensional subspace. We denote by Bg(r) the ball
in E of center 0 and radius r, when E = C%, Bgq(r) will be simply denoted
B(r). For rg > 0 and zg € Q, we denote by z9 + Bg(ro) the set of points of
the form zg + t1&1 + - - - + t4&4, where (t1,...,t,) € Bg(1) and {&1,...,&,} is
any orthonormal basis of E. We also denote Sg(r) the sphere of center 0 and
of radius r in E. For any z € {2, we put

(2.4) da(z, E) =sup{r >0, z+ Bg(r) C Q}.

The expression (2.4) is the distance from z to 9 in the multi-complex direction
supported by E.

If {&1,...,&} is an orthonormal basis of E, then we will sometimes denote
the distance from z to 9 by da(z,&1,...,&). So we have
(2.5)

0a(z,&1,...,8) =sup{r>0/z+t€+ - +1t,& €Q, (t1,...,ty) € B(r)}.

We will need the following elementary proposition to characterize g-sub-
harmonic functions.

Proposition 2.1. Let v : Q — [—o00,400[ be an upper semi continuous func-
tion and suppose that 1 < q < n. Then v is q-subharmonic, if and only if, for
every (n — q + 1)-dimensional complex subspace E C C™, for any closed ball
B = 20+ Bg(1) C Q and any polynomial P € Clt1, ... ty—g+1] such that

v(z0 +tim + -+ tnfq+177nfq+1) < RP(ty,. .. 7tn7q+1)
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whenever |ty | + -+ + |th—gi1|> = 1
then v(zg) < RP(0), where {n,...,Mm—qg+1} i any orthonormal basis of E.
Proof. Tt is clear that the condition is necessary. Indeed, the function
(t,- s tneqe1) = RP(t1, - tneg1)

is pluriharmonic and hence the function (ti,...,tn—g+1) — v(20 + tim +
o tpn—qt1Mn—gt1) — RP(t1,...,thn—g+1) is subharmonic in a neighborhood of
Bg(1), so it satisfies the maximum principal on Bg(1). To prove the suffi-
ciency, let v = limwv, be a strictly decreasing sequence of continuous functions
on 0B such that v = limv, on dB.

Without loss of generalities, we may assume that v, is smooth on a small
neighborhood of Sg and

(2.6) vu(zo i + - F it g 1Mn—gr1) = RPu(t1, .. tngy1)
' whenever [t1|> 4+ + [th_gr1> =1
where P, € C[ty,...,t,—g+1]. Then, we have

v(z0 +tim + -+ gt 1Mn—q41) < RPu(t1, .. tugt1)
whenever [t 2 4 - + [tp_qr1|> = 1,

and thanks to (2.6), we get

v(z0) < RP(0)
1
< — RP,(&)d
(2.7) ~ area(Sg) Js, u(8)do ()
1
= m /S ’U#(ZO + tlnl + e tn,qulT]n,qul)dO'(t).
E
If we take the limit of (2.7) when p — 400, then we find that v satisfies the
mean value inequality. O

In the following theorem, we give some characterizations of ¢-pseudoconvex
domains.

Theorem 2.2. Let 2 < g < n be a nonnegative integer, Q) be an open subset in
C™ and E be a (n — q+ 1)-dimensional complex subspace. Then, the following
properties are equivalent:

(1) Q is strongly q-pseudoconver;

(2) Q is weakly q-pseudoconvex;

(3) Q has a g-subharmonic exhaustion function;

(4) the function (z,&1,...,&n—qt1) — —logda(z,&1,. .., Enqg+1) is q-sub-
harmonic on Q x En—atl

(5) the function z — —logd(z,CQ) is g-subharmonic on ().

We say that € is a ¢-pseudoconvex domain, when one of these properties
holds.
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Proof. We have to prove the following sequence of implications:
1H)=02) =0 =@=06 =0

o It is clear by definitions, that implications (1) = (2) = (3) are obvious.
e For the implication (3) = (4), we use Proposition 2.1. Consider in Q x
E"=4+1 g ball of the form

B = (207517 s 7§niq+1) + BE(]')(nla s anniq+1aala < '7aniq+1)

where, for all j =1,...,n—q+1, =&, & ) =0l m_g1)s
o = (af,...,a)_,.) are vectors in E and Bg(1)(n',...,n" "%t al,. ..,

a"~9t1) is defined by the set
{tns . tnegean™ T et ot g™ (B, tn—gt1) € B(1)},
Consider also a polynomial P € C[t1,...,tp—q+1] such that

—logd(z0 +tain* + -+ + ty—gran™ T,

2.8
(28) Ertiat, T I SRP(ty, et ge1)

for [t1|> + -+ + |tn—gs1]® = 1.
We have to show that the inequality (2.8) holds for |t 2+ - +|t,_q41]* < 1.
Consider the holomorphic function i : E x E— C™ defined by
(2.9)  h(t,w) =z + Z tin’ +wjexp(—P(t1,. .., th—q+1))(§ +t;07).
j=1
By (2.9), we have for all t € B, f(t,0) = zo + Z?;lqﬂ t;n? € pri(B), where
pr1: B x C" — C" is the first projection. Hence we may deduce

(2.10) h(Bg x {0}) = pri(B) C Q.

Equation (2.8) implies that |exp(—P)| < ¢ on 0B, which leads to deduce that
the following assertion holds

(2.11) h(d(Bg) x Bg) C Q.

We want to conclude that h(BE x Bp) C Q. Let I be the set of radii » > 0 such
that h(Bg xrBg) C §2. Then, I is an open interval |0, R[, R > 0. Suppose that
R < 1,let ¢ € ¢-Sh(Q) be an exhaustion function and K = h(0Bgx RBg) € ,
¢ = supg 1. Since any ¢-dimensional complex subspace of E x E is isomorphic
to {0} x E or E x {0}, we may deduce that 1poh is a g-subharmonic function on
a neighborhood of Br x RBg. The maximum principle applied with respect
tot = (t1,...,tn—q+1) implies that ¢ o h(t,w) < ¢ on Br x RBg. Hence
h(Bg x RBg) C Q. € Q and h(Bg x (R +¢)Bg) C Q for some ¢ > 0, a
contradiction.

e The implication (4) = (5): we have

(2.12) —logd(z,0Q) = sup (—logd(z, &1, &n—qt1))-

&1y-osén—q+1€BE,ECCn
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Assertion (2.12) implies that —logd(z,(€) is a continuous function on  and
satisfies the mean value inequality.
e The implication (5) = (1). It is clear that

u(z) = |z|* + max(log d(z,0Q) ™', 0))

is a strictly g-subharmonic continuous exhaustion function. Replace |z|* by
M |z|?, if necessary, where M > 0 is sufficiently big we get

(2.13) u(z) = M|z|? + max(log d(z,0Q) 71, 0).

Applying the Richberg’s theorem for the function defined by (2.13), we may
conclude the existence of U € €°(2) strictly g-subharmonic such that u <
¥ < u+ 1. Then ¥ is the required exhaustion function. (I

Example 2.1. Consider in C*
Q = {(21, 22,23, 24) € C*; 3|21 + 20 + 23 + 24|> — 2|23 + 24]® — 2|24]? < 0O}.

A direct calculation shows that the complex Hessian of the defining function
of Q, given by p(z) = 3|21 + 22 + 23 + 24]? — 2|23 + 24|> — 2|24/?, is not positive.
Hence p is not plurisubharmonic and so €2 is not pseudoconvex. However, we
can easily check that the restriction of p, on each complex subspace {z; = z, =
0}, 1 < j # k < 4, is subharmonic. So 2 has a 3-subharmonic exhaustion
function, which leads to conclude by Theorem 2.2 that €2 is 3-pseudoconvex.

Proposition 2.3. (1) Let Q@ € C? = C,? x CE, and Q' € CF, be g-pseudo-
convex domains (p < n). Then, Qx Q' is a g-pseudoconver domain of C™ x CP.
Furthermore, if F' : C* — CP is a map defined by F(z) = F(z',w) = f(w)
where f : CP — CP is a unitary transformation, then the inverse image F~1(Q')
1s q-pseudoconvex.

(2) If (Qs)ser is a family of g-pseudoconvex open subsets of C™, the interior
of the intersection = (Nger$s)° is q-pseudoconve.

(3) If (2)jen ts a non decreasing sequence of q-pseudoconvex open subsets
of C", then Q = U;en$2; s g-pseudoconver.

Proof. (1) If we have for all c € R and for all ¢ € R, Q. = {z € C" / ¢1(2) <
c} €Qand Q, ={w e C? / Yo(w) < '} € Q' where ¢; and ¢, are smooth ¢-
subharmonic exhaustion functions, then we can write (2 x Q)cqe = {(z,w) €
C"xCP [ 1 (2) +¢p2(w) < c+c'} € Ax QY and (FH(X)) ., = {z= (¢ w) €
C" P x CP / 1 (2) + a(f(w)) < c+ '} € F7H(Y). The second assertion
holds since 3 o f is g-subharmonic because f is a unitary transformation. So
(z,w) = 1(2) + 2(w) and z — P1(2) + P2(F(2)) are exhaustion functions of
Q2 x Q and F~1(Q) respectively.

(2) We have —logd(z,0Q) = sup,c; —logd(z,CQ;s), so the function z
—log d(z,0Q) is g-subharmonic.

(3) We have —logd(z,0Q) = lim |, ,, . — logd(z,09;) and this limit is
g-subharmonic. O
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2.1. Further examples

Example 2.2. Let (f; ;)1<i<n,1<j<n’ be a finite family of analytic functions
on C" such that for all i =1,...,N, dimVect{f; ;,j=1,...N'} >n—q+1.
Recall here that for all ¢ = 1,..., N, the dimension of each subspace V; =
Vect{fi;,j = 1,...N'}, depends on the functions f; ;,7 = 1,...N’. For all
1<j<N,let

P ={z€C"; |fi s ()P + -+ i, s ()7 = figus () = = fin s () < 1}
where (fi, j)s=1,...n—q+1 is an independent subfamily of (f;;)i<i<ni<j<n’-
Put P = Uévz/le, then P is a g-pseudoconvex domain. In case dimVect{f; ;,i =
1,...,N} =n—g+1= N =1 (which means that ¢ = n) then P is a polyhedron
and it is pseudoconvex.

Example 2.3. Consider n and ¢ such that n > 2¢ + 2 and w C C*""? be a
g-pseudoconvex domain. Let u : w — [—o00, +00o[ be an upper semi-continuous
function. Consider the Hartogs domain

Q= {(Zlv . '7Z’n7q+1azl) € Cn_q+1 Xwj

1
3 log (|z11* + -+ + |2n—q+1[%) + u(z’) < 0}.

Then 2 is g-pseudoconvex, if and only if, u is g-subharmonic. Indeed, to see

the necessary condition, using notation (2.5), we may observe that u(z’) =

—logda ((0,2'), (&1, &n—q+1)) where {&1,..., & —qg+1} is the canonical basis

of C"~9+1, Conversely, assume that u is g-subharmonic and continuous. If

is a g-subharmonic exhaustion function of w, then, since u is continuous and
1

since « +— 17 is convex and increasing on | — 00, 0[, then

1 -1
W) + | log(la + -+ [zumgia ) + u(z)

is a g-subharmonic exhaustion function of Q. If u is not assumed to be contin-
uous, we may replace u by u * x. and write 2 = US). where

QE = {(Zla e 'azn—q-‘rlaz/)a d(zla EW) > €,

1
3 log(|z12 + - + |2n—gs1|?) +u* xe <0}

We may conclude by application of property (3) of Proposition 2.3.

3. Levi form of the boundary of g-pseudoconvex domains

In this section we shall characterize the g-pseudoconvexity by the Levi form
of the boundary 02. The holomorphic tangent space is by definition the largest
complex subspace which is contained in the tangent space Thq to the boundary:
hTaq = Toa N JTsq, where J is the almost complex structure that is the
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operator of multiplication by ¢ = /—1. The holomorphic tangent space h1sq, .
is the complex hyperplane of vectors £ € C™ such that

B
(3.14) dp(z)6= > a—jgj ~0.

1<j<n =
The Levi form on hTyq is defined at every point z € 9Q by

1 Pp -
(315)  Lon.() = =—— P 66, €€ Mo,
ZEIR IR
Let’s begin this section by showing that ¢-pseudoconvexity of an arbitrary
domain in C" is a local property of the boundary. An other proof of this fact
was given in [5].

Proposition 3.1. Let 2 C C™ be a domain such that every point zg € 02 has a
neighborhood U such that U N is g-pseudoconver. Then § is q-pseudoconvex.

Proof. Let zg € 092 and let U N Q be a neighborhood of zy. Since U N
is g-pseudoconvex then it is defined in a neighborhood of (2 N U) by a ¢-
subharmonic function pyy. Let V' be a neighborhood of 02, then the function
defined by w = sup,~¢ ycv PunB(o,r) 18 g-subharmonic on V. Let x be an
increasing convex function such that
(3.16) Vr >0, x(r) > sup PUNB(0,r)-

(Q~V)NB(0,r)NU
Since the function z — Y77, [2; |2 — (n — q+1)|2,|? is g¢-subharmonic, then by
(3.16) the function

(2) = max X(Z |2[* = (n — g + 1)]za[*), w(2)

coincides with x (327, |2]2 — (n—q+1)|2,]?) in a neighborhood of Q\ V. Hence
1) is an exhaustion g-subharmonic on §2. O

Theorem 3.2. Let 2 < g < n. An open subset  C C™ with smooth boundary
is g-pseudoconvex if and only if, for every (n — q + 1)-dimensional complex
subspace E C C™, the Levi form L3912|Eth69 is semipositive at every point

of 09).

Proof. Consider a (n — ¢+ 1)-dimensional complex subspace E C C". Without
loss of generalities we may assume E = {{; = --- = & = 0}. Let 6(2) =
d(z,09), z € Q, then the function p = —d is smooth near 9. Suppose that
is g-pseudoconvex, then the function — log(—p) is g-subharmonic which means
that for all z € Q near 912 and for all £ € E, we have

1 9% 1 dp dp -
. — 2 F L PP eE > 0.
(3:17) Z <|p| 0z;0% * p? 0z, azk> Sk 20

q+1<j,k<n
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As we have

q+1<j,k<n

then inequality (3.17) gives that

2p - ap
Z %éjfk >0 whenever Z %5 —0

q+1<j,k<n q+1<j<n

and this is also true at the limit on 02, which means that p is ¢g-subharmonic.
Conversely, suppose that 2 is not g-pseudoconvex, then by Theorem 2.2, the
function — log(d) is not g-subharmonic in any neighborhood of 9. Hence
there exist a (n — g + 1)-dimensional subspace E C C™ and an orthonormal
basis {&1,...,&—q¢+1} C E such that the Laplacian of the function

(t1y ooy tn—g1) = logd(z + 161 + - +tn—gr16n—g+1)

is strictly positive at point (t1,...,tn—g+1) = (0,...,0) for some z in the neigh-
borhood of 9). By Taylor’s formula, we have

logd(z +t1&1 4+ -+ tn—gr1&n—q+1)

(3.18) = logd(z)+ > Rlajt; +0;82) + ¢;lt; > + o([t[?),
1<j<n—q+1
where aj,bj € C and ¢ = (62 log5(z+t151;“‘é-ljnfq+15n7q+1))‘ > 0. Let
el t]‘ZO

zo € 09 such that §(z) = |z — 20| and put
(3.19)

h(tl, e ,tn_q+1) =z+ Z tjfj +exp Z ajt; + bjﬁ? (20 - Z)

1<j<n—q+1 1<j<n—q+1

We have h(0) = 2o, write 6(z + 11 + - -+ + th—gt1&n—q+1) = 0(2 + t£) as

§(z41€) =6 |2+ tE +exp > ajtj+bit? ] (20— 2)

1<j<n—q+1

—exp Z ajtj —+ bﬂf? (ZO — Z)
1<j<n—gq+1

= |h(t) —z0 — | exp Z a;t; + bjt? (20 — 2)
1<j<n—q+1
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and use the triangle inequality, by (3.18) and (3.19) we get

S(h(t) = 6(= +1€) = 6(2) fexp( D ajt; +bjt])

1<j<n—q+1

>6(z)fexp Y Rlagty+ bt exp( D (glt]*)

1<j<n—q+1 1<j<n—q+1

—8(2) exp( > agt;+bit])

1<j<n—q+1
ST a4+ byt cjlt;1*
> 0(2) |exp ajtj + bjt; exp g 1
1<j<n—q+1 1<j<n—q+1
cft]”
> 0(z)—
> 5(2) %%

when [¢t| is sufficiently small and ¢ = mini<j<n—q+1¢;. Since h(§(0)) = 6(20)
=0,wegetatt=0foralll <j<n-—qg+1,
d0(h(t)) 09 oh

— = —(20)=—(0)=0
815] 1<k<n—q+1 azk 8t]—
and
025(h(t)) %6 oh ,  Oh
Poht) _ 0 )20 20 > 0.
0t;0t; 1§k,l§7q+1 021,07y, ot; oty
Hence VAh(0) € hT50,z|p and L6Q7ZU|E(V}I(O)) < 0. O

Definition 3.1. Consider 2 < ¢ < n. The boundary 02 is said to be weakly
(resp. strongly) g-pseudoconvex, if for every z € 9Q and every (n — g + 1)-
dimensional complex subspace E C C", Lsq . is semi-positive (resp. positive
definite) on E N hTyq, .

Example 3.1. Consider in C3, Q = {p < —1} where p(z) = 3(|21|* + |22]?) —
2|32, Then, it is clear that 2 is 2-pseudoconvex and 0 ¢ Q. Further, by (3.14)
and (3.15), at every point z € 91, the holomorphic tangent space to 9 is
given by the equation 3z1&; + 3Z2&2 — 223&3 = 0 and the Levi form on hTsq .
is given by

_3(&”? + &%) - 2|§3|2.

La( z =
10 e

An easy computation yields that for all j = 1,2, 3 we have LaQ,z‘ B, Toq >0

where E; = {&; = 0}. Indeed, we may chose z € 02 such that z, # 0. For all
& € By NhThg,,, we have

S (2, 2e0aR),

&2 \3 9[22
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3|€22—2]¢5]?

V/ 1+6]z3]2

E>NhTsq,,, we have Lo .(§) > 0. Finally, it is obvious that Lagq . is positive
definite on E3 N hTpq . but semi-positive on E; N hlsa,., j = 1,2 so 0Q is
weakly 2-pseudoconvex.

Hence, > 0 on Ey N hlpq,.. Similarly, we prove that for all £ €

Example 3.2. For any C < 0, let consider Q¢ = {z € C", K(a,z) < C},
where K is the (n — ¢+ 1)-subharmonic function given by (1.2). It is clear that
z +— K(a, z) is smooth near the boundary 0Q¢. For all 1 < j, k < n, an easy
computation yields,

0K )
5, = (a—aznK(a-12)
J
and
71 aQK a—q— . .
Hy(o) 02,02 (= @)z (|22 + (a =g = D)|z]?) if j=k
q J J
L oK 2a=a-2)

=(a—q)la—q—1)z;zZk|z if j#k.
Hq(Oé) 82’]82k ( q)( q ) J k| J 7é
Let E C C™ be a g-dimensional subspace. Without loss of generalities, we may
assume that F is given by the equations {g11 = --- = &, = 0. Hence, we find
that, at every point z € )¢, the intersection of the holomorphic tangent space
to 002 with E, is given by the equation Zlgqu Z;&; = 0 and the Levi form on
hToa,. N E is given by

LBQ’Z|hTan,zﬁE(€)

q

o q— 2(,12(a—q—1) o 2(a—g—2) N
= ql¢f?z| +(a—q—1)2| 56| |,
Hy()|VE (a,2)] 256

j=1

where |VK(a,z)] = (¢ —a)|z||K(a — 1,2)| is the modulus of the complex
gradient of K. By the Cauchy-Schwartz inequality we find that

q—«

L > —q—1)) g2z > 0.
697Z|hT59,zﬂE(§) - Hq(Oé)|VK(Oé,Z>| (q+ (CY q )) |€| |Z| - 0

The last inequality holds true on E'N hTyq , for every g-dimensional complex
subspace E C C™.

4. Kiselman’s minimimum principale for g-subharmonic functions

Let v be a g-subharmonic function on £ x Q' C C" x CP. The partial
minimum function on ) defined by

u(¢) = inf (¢, 2)
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need not be g-subharmonic. Indeed, consider the following counterexample of
a 2-subharmonic function in C3 x C given by

(4.20)

v(21, 22, 23, 24) = |24+ 23+ 20+ 21 |2 —| 23t 20t21 ]2 = |24 2R (24(Z3 + 22 + 21))

We have u(21, 22, 23) = —|21+22+23/? and it is clear that u is not g-subharmonic
for ¢ = 2, 3.
However, the minimum property holds true when v(¢, z) depends only on

Theorem 4.1. Let Q = Q1 x Qo C C? x C" be a g-pseudoconver domain such
that each slice

Qe={z€C" ((,2) e}, ¢ecC?

is a conver tube we + iR™, we C CP. Then, for every q-subharmonic function
v((,2) on Q that does not depend on (z), the function u(¢) = inf,cq, v((, 2)
is q-subharmonic or locally = —oo on Qg = prea ().

Proof. The idea of the proof is inspired from [1]. Consider a (n—gq+ 1)-complex
subspace of CP x C" such that L = {(;, =--- = (;, = 2, =--- = 2z, = 0} and
q = s+ t. The hypothesis implies that v((, 2)|Lnq is convex in z = R(z). We
may, first, assume that v is smooth, g-subharmonic in (¢, z) and v(, 2)|Lnq is
strictly convex in z and lim,_,g.,U{so} (¢, ) = +00 for every ¢ € w’. Then
the function = + vjLno(¢, ) has a unique minimum point z = g(¢) solution

v
ET

implicit function theorem shows that g is smooth. Let B a ball contained in €2
defined by the parametrization

of the equations = 0. As the matrix (f’zli%ks) is positive definite, the

—q+1
L~C" " E] (wla s 7wn7q+1) = CO +wia; + -+ Wn—q+10n—q+1

where a1,...,an—g+1 € C" and w = (w1, ..., Wp—g41) € Bpn_g+1. There exists
a holomorphic function f on the unit ball Bg(1) whose real part solves the
Dirichlet problem

(421) §}%f(ﬁla s atn—q-i-l) = g(CO +tiar + -+ tn—q-‘,—lan—q-i-l)-
Since the function
(wla v awn—q-l-l) = ’U(CO +wiay + -+ Wn—q+10n—q+1, f(wla oo awn—q-i-l))

is subharmonic, we get the mean value inequality

(o, f(0))

IN

1
— ¢ ot o 1Gneaits P e e do(t
area(SE) /SE U(CO That - et f( ! q+1)) U( )
1

- ¢ bt 1@nait, Gt - tnear1))do (8).
area(SE)[SEU(COJF 101+ + thg10n—g+1,9(t1 ¢+1))do(t)
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The last equality holds since we have, by (4.21), Rf = g on 0Bp_q11 and
v(¢, z) = v(¢,R(z)) by hypothesis. We have

(4.22) u(Go) < v(Co, f(0))  and  u(¢) =v(¢,9(¢))

hence, we see by (4.22) that u satisfies the mean value inequality, thus u ;nq/
is subharmonic.

Let now extend the result to an arbitrary g-subharmonic function v. We may
suppose n — g+ 1 < p < n. Let ¢(¢, z) a positive continuous g-subharmonic
function on  which depends only on #(z) and is an exhaustion of QN (CP xR™),
we may choose such a function as
(4.23)

p n p n
V(G 2) =max [ [D G+ Ryl — D IGFP— Y Rzt —logdal(¢2), L) | -
Jj=1 Jj=1 Jj=n—q+2 Jj=n—q+2

There is an increasing sequence C; — 400 such that each function obtained
from (4.23) and defined by ¢; = (C; — v x p1)~! is an exhaustion of a ¢-
J

pseudoconvex open set ; € 2 whose slices are convex tubes and such that
d(Qj, BQ) > % Let

1
(4.24) vj(C,Z):v*p;(C,ZHEI%(Z)IQH/JJ(C,Z),
then (4.24) gives a decreasing sequence of g-subharmonic functions on Q; sat-
isfying the previous conditions. As v = limwvj;, we see that v = limwu; is
g-subharmonic. ([

As we see, it is clear that the image F(Q) of a g-pseudoconvex domain {2
by a holomorphic map F' need not be g-pseudoconvex. Indeed, Consider the
domain 2 defined as the following

Q={(z,25) = (21,...,25) € C log|z1| + v(22, 23, 24, 25) < 0},

where v is the function given by example (4.20). If Q' C C* is the image of Q
by the projection map (2', z5) — 2/, then we have

Q' = {(21,22,2:3,24) € (C4; 10g|21| + U(ZQ,Zg,Z4) < O}a
where the function w is given by w(zs, 23, 24) = inf, ecv(22, 23, 24, 25). It is

clear that €’ is not 2-pseudoconvex. However, we have the following result.

Proposition 4.2. Let 2 C CP x C™ be a q-pseudoconvex open set such that all
slices Q¢, ¢ € CP, are convex tubes in C". Then the projection ' of Q on C?
is q-pseudoconvex.

Proof. Let v be a g-subharmonic function on €2 equal to the function ¢ defined

in the proof of Theorem 2.2. Then w is a g-subharmonic exhaustion function
of Q. O
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