THE BOUNDARY BEHAVIOR BETWEEN THE KOBAYASHI-ROYDEN AND CARATHÉODORY METRICS ON STRONGLY PSEUDOCONVEX DOMAIN IN Cⁿ

KIM JONG JIN AND PARK SUNG HEE

Dept. of Mathematics, Chonbuk National University, Chonju 561-756, Korea.

Abstract The aim of this paper is to prove the boundary behavior between the Carathéodory and Kobayashi-Royden metrics in a strongly pseudoconvex bounded domain with C^2 -boundary in \mathbb{C}^n and to show that the converse does not holds. S. Venturini([Ven]) proved the corresponding result with distances in place of the infinitesimal metrics.

1. Definitions and preliminaries

We recall at first the definition of the Kobayashi-Royden metric and the Carathéodory metric on a complex manifold. On all complex manifold we are under consideration we assume the connectedness, Hausdroff and the countably compactness.

By Δ and ds_{Δ} , we mean the open unit disc in \mathbb{C} and the Poincaré metric on Δ , respectively. Also by N(M) we denote the function space of all holomorphic mappings of M into N.

Let T(M) be the tangent bundle for a complex manifold M. Then we define the *Kobayashi-Royden metric* $F_K^M: T(M) \to \mathbb{R}^+ \cup \{0\}$ on M by

$$F_K^M(z,\xi) := \inf_{v \in T_0(\Delta)} \{ \ ds_{\Delta}(0,v) : \exists f \in M(\Delta) \text{ s.t. } f(0) = z, \ df(0)v = \xi \}$$

Received May 1, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 32F05, 32F15

Key words and phrases : Kobayashi-Royden metrics and Carathéodory metrics

for all $(z, \xi) \in T(M)$.

The Carathéodory metric $F_C^M: T(M) \to \mathbb{R}^+ \cup \{0\}$ on M is defined by

$$F_C^M(z,\xi) := \sup\{ ds_{\Delta}(0,df(z)\xi) : f \in \Delta(M) \text{ with } f(z) = 0 \}$$

for all $(z, \xi) \in T(M)$.

In F_K^M and F_C^M , we mean that the upperscript M depends on M. F without a subscript C or K refers to either metric unless specified otherwise.

The proof of the following proposition is an ease result from definitions and also see [Gra], [Roy], etc.

Proposition 1. Let M and N be complex manifolds. Then

- (1) For a holomorphic map $f: M \to N$, $F^M(z,\xi) \ge F^N(f(z), f_*(\xi))$.
- (2) $F_C^M(z,\xi) \le F_K^M(z,\xi)$. (3) $F_C^\Delta(z,\xi) = F_L^\Delta(z,\xi) = ds_\Delta(z,\xi)$.

THEOREM 2. ([Lem]) Let $\Omega \subset \mathbb{C}^n$ be a domain biholomorphic to a bounded convex domain. Then,

$$F_K^\Omega(z,\xi) = F_C^\Omega(z,\xi)$$

for all $(z, \xi) \in T(\Omega)$.

A bounded domain $\Omega \subset \mathbb{R}^N$ [resp. \mathbb{C}^n] is said to have \mathbb{C}^k boundary $(k \geq 1)$ if there is a real-valued C^k function φ defined on a neighborhood U of the closure $\overline{\Omega}$ of Ω such that

- $(1) \quad \Omega = \{x \in U \mid \varphi(x) < 0\}$
- (2) $\nabla \varphi := (\frac{\partial \varphi}{\partial z_1}, \cdots, \frac{\partial \varphi}{\partial z_n}) \neq 0$ on $\partial \Omega$ (the boundary of Ω)

We call the function φ a \mathbb{C}^k defining function for Ω .

Remark 1. It follows from the implicit function theorem that Ω has a \mathbb{C}^k defining function if and only if $\partial \Omega$ is a \mathbb{C}^k manifold.

Let Ω be a bounded domain with C^2 -boundary and let $p \in \partial \Omega$.

 \mathbb{R} In case of $\Omega \subset \mathbb{R}^N$, we say that $\partial \Omega$ is strongly convex at p if

$$\sum_{j,k=1}^{N} \frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{k}}(p) w_{j} w_{k} > 0$$

for all $w \neq 0 \in \mathbb{R}^N$ satisfying $\sum_{j=1}^N \frac{\partial \varphi}{\partial x_j}(p) w_j = 0$.

We say that Ω is strongly convex if $\partial\Omega$ is strongly convex at each boundary point of Ω .

§ In case of $\Omega \subset \mathbb{C}^n$, we say that $\partial \Omega$ is strongly pseudoconvex at p if the Levi form

$$\mathcal{L}_{\varphi,p}(\xi) := \sum_{j,k=1}^{N} \frac{\partial^{2} \varphi}{\partial z_{j} \partial \overline{z}_{k}}(p) \xi_{j} \overline{\xi}_{k} > 0$$

for all $\xi(\neq 0) \in \mathbb{C}^n$ satisfying $\sum_{j=1}^n \frac{\partial \varphi}{\partial z_j}(p)\xi_j = 0$.

We say that Ω is strongly pseudoconvex if $\partial\Omega$ is strongly pseudoconvex at each boundary point of Ω .

REMARK 2.

- (1) Any strongly convex boundary point of Ω is extreme point of $\overline{\Omega}$.
- (2) The Levi form does transform canonically under any biholomorphic mapping.

THEOREM 3. ([Gra]) Let $\Omega \subset \mathbb{C}^n$ be a strongly pseudoconvex domain with \mathbb{C}^2 -boundary and let $p \in \partial \Omega$. Then for any neighborhood U of p and for all vector $\xi \in \mathbb{C}^n$,

$$\lim_{\Omega\cap U\ni z\to p}\frac{F_K^{\Omega\cap U}(z,\xi)}{F_K^{\Omega}(z,\xi)}=1.$$

2. Main theorem

THEOREM. Let $\Omega \subset \mathbb{C}^n$ be a strongly pseudoconvex bounded domain with \mathbb{C}^2 -boundary. Then given $\epsilon > 0$, there is a compact subset $K(\epsilon) \subset \Omega$ depending on ϵ such that

$$F_K^{\Omega}(z,\xi) \le (1+\epsilon) F_C^{\Omega}(z,\xi)$$

for all $z \in \Omega \setminus K(\epsilon)$ and $\xi \in \mathbb{C}^n$.

Proof. By Fornaess imbedding theorem ([Kr 2]), there exists $n'(>n)\in\mathbb{N}$, a strongly convex domain $\Omega'\subset\mathbb{C}^{n'}$, a neighborhood $\hat{\Omega}$ of $\overline{\Omega}$ and a proper holomorphic embedding $\Psi:\hat{\Omega}\to\mathbb{C}^{n'}$ such that

- (1) $\Psi(\Omega) \subset \Omega'$
- (2) $\Psi(\partial\Omega)\subset\partial\Omega'$
- $(3) \ \Psi(\widehat{\Omega} \setminus \overline{\Omega}) \subset \mathbb{C}^{n'} \setminus \overline{\Omega'}$
- (4) $\Psi(\hat{\Omega})$ is transversal to $\partial \Omega'$.

For any given $\epsilon > 0$, we claim that there exist a compact subset $K(\epsilon) \subset \Omega$ such that

$$F_K^{\Omega}(z,\xi) \leq (1+\epsilon) F_K^{\Omega'}(\Psi(z),\Psi_*(\xi))$$

for all $z \in \Omega \setminus K(\epsilon)$ and $\xi \in \mathbb{C}^n$.

Then we get the required result. In fact, since Ω' is a convex domain,

$$F_K^{\Omega'}(\Psi(z),\Psi_*(\xi)) = F_C^{\Omega'}(\Psi(z),\Psi_*(\xi))$$

by Theorem 2. And also by the monotonicity of the Carathéodory metric (Proposition 1),

$$F_C^{\Omega'}(\Psi(z), \Psi_*(\xi)) \le F_C^{\Omega}(z, \xi).$$

To prove our claim, suppose that the claim is not hold. Then there are $\epsilon > 0$ and sequences $\{z_{\nu}\} \subset \Omega$, $\{\xi_{\nu}\} \subset \mathbb{C}^n$ such that $z_{\nu} \to z \in \partial\Omega$ and

$$F_K^{\Omega}(z_{\nu}, \xi_{\nu}) \ge (1 + \epsilon) F_K^{\Omega'}(\Psi(z_{\nu}), \Psi_*(\xi_{\nu})). \tag{\dagger}$$

By the transversality assumption and since the domains are strongly pseudoconvex, there are open neighborhoods U of z and V of $\Psi(z) \in \partial \Omega'$ for which $\Omega \cap U$ and $\Omega' \cap V$ are connected, $\Psi(\Omega \cap U) \subset \Omega' \cap V$ and a holomorphic retraction $\Phi: \Omega' \cap V \to \Omega \cap U$ for Ψ . Then

$$\begin{split} F_K^{\Omega\cap U}(z,\xi) &\geq F_K^{\Omega'\cap V}(\Psi(z),\Psi_*(\xi)) \\ &\geq F_K^{\Omega\cap U}(\Phi(\Psi(z)),\Phi_*(\Psi_*(\xi))) \\ &= F_K^{\Omega\cap U}(z,\xi). \end{split}$$

Hence $F_K^{\Omega \cap U}(z,\xi) = F_K^{\Omega' \cap V}(\Psi(z), \Psi_*(\xi))$ and so we have the following equality by Theorem 3

$$\lim_{\nu\to\infty}\frac{F_K^\Omega(z_\nu,\xi_\nu)}{F_K^{\Omega'}(\Psi(z_\nu),\Psi_*(\xi_\nu))}=\lim_{\nu\to\infty}\frac{F_K^\Omega(z_\nu,\xi_\nu)}{F_K^{\Omega\cap U}(z_\nu,\xi_\nu)}\frac{F_K^{\Omega'\cap V}(\Psi(z_\nu),\Psi_*(\xi_\nu))}{F_K^{\Omega'}(\Psi(z_\nu),\Psi_*(\xi_\nu))}=1,$$

which is a contradiction to (†). Thus we complete the proof.

The next example shows that the converse of Theorem does not holds.

EXAMPLE. For p > 0, put $\Omega(p) = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^{\frac{2}{p}} < 1\}$. If $0 , then <math>\Omega(p)$ is a convex bounded domain with \mathbb{C}^2 -boundary. Hence by Theorem 2,

$$F_K^{\Omega(p)}(z,\xi) = F_C^{\Omega(p)}(z,\xi)$$

for all $(z,\xi) \in \Omega(p) \times \mathbb{C}^2$. But since the Levi form of the defining function $\varphi(z_1,z_2) = |z_1|^2 + |z_2|^{\frac{2}{p}} - 1$ for $\Omega(p)$ degenerates along the curve defined by the equations $|z_1| = 1$ and $z_2 = 0$, $\Omega(p)$ is not strongly pseudoconvex.

References

- [Aba] M. Abate, A Characterization of Hyperbolic Manifolds, Proc. AMS 117 (1993), 789 - 793.
- [Azu] K. Azukawa, Hyperbolicity of circular domains, Tohoku Math. J. 35 (1983), 403 - 413.
- [Gra] I. Graham, Boundary behavior of the Carathéodory and Kobayashi metrics on Strongly Pseudoconvex Domains in \mathbb{C}^n with Smooth boundary, Trans. AMS **207** (1975), 219 240.
- [Ko1] S. Kobayashi, Hyperbolic manifolds and Holomorphic mappings, Dekker New York, 1970.
- [Kr1] S.K. Krantz, The boundary behavior of The Kobayashi metric, Rocky Mountain J. Math. 22 (1992), 227 233.
- [Kr2] _____, Function theory of several complex variables, 2nd ed., Wadsworth, Belmount, 1992.
- [Lem] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Analysis Mathematica 8 (1982), 257 - 261.

- [Roy] H.L. Royden, Remarks on the Kobayashi metric, Several Complex Variables II, Lecture Note in Math. vol 185, Springer-verlag New York Berlin 1971.
- [Ven] S. Venturini, Comparison between the Kobayashi and Carathéodory distances on strongly pseudoconvex bounded domains in \mathbb{C}^n , Proc. AMS 107 (1989), 725 730.