• Title/Summary/Keyword: Run-Time Environment

Search Result 282, Processing Time 0.031 seconds

Development of Workflow Management System Using Run-time Encapsulation (실행시간캡슐화를 통한 워크플로우관리시스템의 구축)

  • 정재윤;김동수;김영호;강석호
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.215-218
    • /
    • 2000
  • Workflow Management System(WfMS) enables corporations to manage business processes efficiently The purpose of this research is to develop a management system that is capable of managing complicated business processes efficiently under distributed environment where many companies or divisions are participating. Run-time encapsulation proposed in this paper is a system design methodology that enables appropriate response to the dynamically changing processes by using nested processes. We have implemented WfMS under Web environment using run-time encapsulation. Run-time encapsulation using nested process is an efficient development methodology for implementing heterogeneous and distributed WfMS under web environment.

  • PDF

Removal Character of Nitrogen and Phosphorus in Swine Wastewater with Injection Time of Acetic Acid on SBR (SBR에서 아세트산 주입시간변화에 따른 양돈폐수의 질소, 인 제거특성)

  • Huh, Mock;Lee, Yong-Doo;Kang, Jin-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.132-137
    • /
    • 2003
  • This study was carried out to investigate removal character of nitrogen and phosphorus with injection time of acetic acid on SBR, which is one of the biological treatment process. Wastewater used in experiment period was swine wastewater with character, relatively lower organic material concentration than nitrogen concentration. In the experiment with injection time of acetic acid, run 1 wasn't injected acetic acid during the anoxic period, and run 2 was injected intermittently acetic acid during the anoxic period of 15 hours. And run 3 was injected intermittently during the anoxic period of 3hours from end of wastewater filling. And filing time of the wastewater was 20hour from run 1 to run 3. In the study, the highest removal efficiency of organic and nitrogen were obtained by the operating condition of Run 2(the ratio of mixing/aeration time : 16.5/5.5, injection time of acetic acid : 15hours) and T-P was obtained by the operation condition of Run 3(the ratio of mixing/aeration time : 16.5/5.5, injection time of acetic acid : 3hours),and removal efficiency of $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, T-N and T-P in the treated water was 96.1%, 87.7%, 90.6%, 86.6% and 84.5%, respectively.

  • PDF

Effect of Optical Panal Distances on the Growth Rate of Chlorella vulgaris in a Photobioreactor (도광판의 간격이 Chlorella vulgaris 증식에 미치는 영향)

  • Choi, H.J.;Lee, S.M.;Yu, S.W.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.3
    • /
    • pp.214-220
    • /
    • 2014
  • The aim of this study is to optimize the efficiency of a photobiorector on the growth rate of Chlorella vulgaris (C. vulgaris) by varying distance of optical panel (OP). The round shaped C. vulgaris (FC-16) having the size of $3-8{\mu}m$ is employed in this study. The cells of C. vulgaris are cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. The OP is placed at four different distances i.e., at 225 mm distance (Run 1), 150 mm distance (Run 2), 112.5 mm distance (Run 3) and 90 mm distance (Run 4) having a LED (Light Emitting Diode) source. The diffuse rate is achieved to 86%, 90%, 92% and 94% for Run 1, Run 2 Run 3 and Run 4, respectively. A narrower distance of OP caused to effectively to increase the efficiency of diffuse light rate. For mass cultivation of this biomass, medium is changed according to distance of OP after attaining a maximum biomass concentration; Run 1 in 8 days, Run 2 in 6 days, Run 3 in 4 days and Run 4 in 3 days. In addition, the amount of maximum biomass rate for Run 4 was reached 3 times higher than that of Run1. However, growth rate, chlorophyll per cell, cell volume and doubling time are found to be Run 3 and Run 4 higher than that of Run 1 and Run 2 samples. However, Run 3 and Run 4 are having a slight difference in all these measurements. These findings suggest that in terms of economic consideration and efficiency towards simultaneous mass cultivation of biomass, Run 3 was found to be more effective than other samples.

Run-time Memory Optimization Algorithm for the DDMB Architecture (DDMB 구조에서의 런타임 메모리 최적화 알고리즘)

  • Cho, Jeong-Hun;Paek, Yun-Heung;Kwon, Soo-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.413-420
    • /
    • 2006
  • Most vendors of digital signal processors (DSPs) support a Harvard architecture, which has two or more memory buses, one for program and one or more for data and allow the processor to access multiple words of data from memory in a single instruction cycle. We already addressed how to efficiently assign data to multi-memory banks in our previous work. This paper reports on our recent attempt to optimize run-time memory. The run-time environment for dual data memory banks (DBMBs) requires two run-time stacks to control activation records located in two memory banks corresponding to calling procedures. However, activation records of two memory banks for a procedure are able to have different size. As a consequence, dual run-time stacks can be unbalanced whenever a procedure is called. This unbalance between two memory banks causes that usage of one memory bank can exceed the extent of on-chip memory area although there is free area in the other memory bank. We attempt balancing dual run-time slacks to enhance efficiently utilization of on-chip memory in this paper. The experimental results have revealed that although our algorithm is relatively quite simple, it still can utilize run-time memories efficiently; thus enabling our compiler to run extremely fast, yet minimizing the usage of un-time memory in the target code.

Application of MBBR Process in the Activated Sludge Process (기존 활성슬러지 공정의 MBBR 공정 적용가능성 평가)

  • Park, Woon-Ji;Lee, Hae-Seung;Lee, Chan-Ki;Kim, Sung-Gun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.457-465
    • /
    • 2004
  • The objective of this study is to evaluate the possibility to apply the Moving Bed Biofilm Reactor(MBBR) in the activated sludge treatment process with existing aerobic HRT. Optimal operation conditions were assumed according to the analysis of organic matter and nutrients removal efficiencies depending on loading variations. The process was operated under different conditions: RUN I(HRT=7.14hr, $I{\cdot}R=100%$), RUN II(HRT=6.22hr, $I{\cdot}R=100%$), RUN III(HRT=6.22 hr, $I{\cdot}R=150%$), RUN IV(HRT=6.22hr, $I{\cdot}R=200%$), the TBOD removal efficien cies are 88%, 88.5%, 94.6%, 97.6%, respectively. Overall TSS removal efficiency is 90%, and it is increasing in RUN IV. In the case of Nitrogen, the highest removal efficiency of 90% was observed in RUN III and RUN IV, Nitrification and Denitrification rates are 0.013-0.016kg $NH_3-N/kg$ Mv-d and 0.009-0.019kg $NO_3/kg$ Mv-d, respectively. Phosphorus removal efficiencies are 89.6% in RUN I, 91.5% in RUN II, 84.3% in RUN III, and 76.4% in RUN IV. The process under shorter SRT yields better performance in terms of phosphorus removal. It was noticed that to achieve the effluent phosphorus concentration ofless than 1mg/L and removal efficiency higher than 80%, SRT should not be longer than 10 days. Experimental result shows that HRT of 6.22 hours is suitable for this treatment process, and, as a result, the aerobic reactor including moving media and DO depletion tank have a sufficient effect to the process performance.

A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing (그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구)

  • Hong, Seung-Do;Ha, Yeong-Man;Cho, Kum-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

Implementation of the submarine diving simulation in a distributed environment

  • Ha, Sol;Cha, Ju-Hwan;Roh, Myung-Il;Lee, Kyu-Yeul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.211-227
    • /
    • 2012
  • To implement a combined discrete event and discrete time simulation such as submarine diving simulation in a distributed environment, e.g., in the High Level Architecture (HLA)/Run-Time Infrastructure (RTI), a HLA interface, which can easily connect combined models with the HLA/RTI, was developed in this study. To verify the function and performance of the HLA interface, it was applied to the submarine dive scenario in a distributed environment, and the distributed simulation shows the same results as the stand-alone simulation. Finally, by adding a visualization model to the simulation and by editing this model, we can confirm that the HLA interface can provide user-friendly functions such as adding new model and editing a model.

A Study on Evaluation of Accuracy and Precision on B, T, X Analysis Using Thermal Desorption/Gas Chromatograph/Flams Ionization Detector (열탈착/GC/FID를 이용한 B, T, X 분석의 정확도 및 정밀도 평가)

  • 박정근;유기호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.3
    • /
    • pp.265-275
    • /
    • 2000
  • By using thermal desorption/gas chromatograph/flame ionization detector(TD/GC/FID), this study was carried out to evalute an accuracy and a precision on Benzene(B), Toluene(T), o-Xylene(X) analysis in an industrial hygiene laboratory. Limits of detection of TD/GC/FID on B, T, X were showed 13.75ng/sample or less. For the accuracy of the method by concentration levels, overall bias was showed 7.7% as an absolute value, and the pooled coefficient of variation showed 3.51%. For the precision on repeatability of peak area and retention time between within-run and between-run of analytical system, it is showed the results of within-run gave better than those of between-run. Also the accuracy by sorbents(Tenax TA and Chromosorb 106)was evaluated, and the precision on reproducibility between MDHS72 and this study was compared. It is showed it is possible for TD/GC/FID to evaluate accurately B, T, X concentration levels of less than 1ppm at indoor or outdoor of workplaces in Korea.

  • PDF

Design and Evaluation of INS Initial Alignment under Vibration Environment of Aircraft Run-up (항공기 Run-Up 진동 환경에서의 관성항법장치 초기 정렬 방법 설계 및 평가)

  • Yu, Haesung;Lee, Inseop;Oh, JuHyun;Kim, CheonJoong;Park, Heung-won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.691-698
    • /
    • 2015
  • Inertial Navigation Systems (INS) are widely used as the main navigation device for aircraft. To get the initial attitude, the INS requires the initial alignment before navigation starts. An aircraft also needs an engine test procedure that causes some vibrations before flight. An INS can't be aligned in a vibration environment so the initial alignment is performed before the aircraft engine test. Therefore, the initial alignment time of an INS has been a major factor in limiting an aircraft's takeoff response time. In this paper, we designed an initial alignment algorithm that can be executed even in disturbances such as aircraft run-up. We demonstrated verification of the algorithm that is embedded on the real INS and testing methods to evaluate the alignment of the INS. We also analyzed the test results of the proposed initial alignment algorithm that is performed during a real aircraft run-up.

ART : An Implementation on the Active_object RunTime Systems Applicable for the Embedded Systems (ART : 임베디드 시스템에 적용 가능한 능동객체 실행시간 지원 시스템의 구현)

  • Park, Yoon-Young;Lim, Dong-Sun;Jung, Bu-Geum;Lee, Kyung-Oh;Park, Jung-Ho
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.295-304
    • /
    • 2003
  • Active object is an Independent runnable unit which is scheduled by CPU in creation time. In this paper, we define the active object and suggest ART(Active object RunTime support systems) which controls creation and execution of the active object. ART can Provide users locational transparency and support easy method call mechanism. We also designed a communication model among active objects and implemented a communication method to make the distributed programing possible. The implementation target platform of ART is an embedded system which has only limited resources and runs in the distributed computing environment.