DOI QR코드

DOI QR Code

Effect of Optical Panal Distances on the Growth Rate of Chlorella vulgaris in a Photobioreactor

도광판의 간격이 Chlorella vulgaris 증식에 미치는 영향

  • Choi, H.J. (Department of Environment & Health, Kwandong University) ;
  • Lee, S.M. (Department of Environment & Health, Kwandong University) ;
  • Yu, S.W. (Department of Environment & Health, Kwandong University)
  • 최희정 (관동대학교 보건환경학과) ;
  • 이승목 (관동대학교 보건환경학과) ;
  • 유성환 (관동대학교 보건환경학과)
  • Received : 2013.01.19
  • Accepted : 2014.03.10
  • Published : 2014.03.31

Abstract

The aim of this study is to optimize the efficiency of a photobiorector on the growth rate of Chlorella vulgaris (C. vulgaris) by varying distance of optical panel (OP). The round shaped C. vulgaris (FC-16) having the size of $3-8{\mu}m$ is employed in this study. The cells of C. vulgaris are cultured in the Jaworski's Medium with deionized water at $22^{\circ}C$ for 15 days. The OP is placed at four different distances i.e., at 225 mm distance (Run 1), 150 mm distance (Run 2), 112.5 mm distance (Run 3) and 90 mm distance (Run 4) having a LED (Light Emitting Diode) source. The diffuse rate is achieved to 86%, 90%, 92% and 94% for Run 1, Run 2 Run 3 and Run 4, respectively. A narrower distance of OP caused to effectively to increase the efficiency of diffuse light rate. For mass cultivation of this biomass, medium is changed according to distance of OP after attaining a maximum biomass concentration; Run 1 in 8 days, Run 2 in 6 days, Run 3 in 4 days and Run 4 in 3 days. In addition, the amount of maximum biomass rate for Run 4 was reached 3 times higher than that of Run1. However, growth rate, chlorophyll per cell, cell volume and doubling time are found to be Run 3 and Run 4 higher than that of Run 1 and Run 2 samples. However, Run 3 and Run 4 are having a slight difference in all these measurements. These findings suggest that in terms of economic consideration and efficiency towards simultaneous mass cultivation of biomass, Run 3 was found to be more effective than other samples.

본 연구는 도광판의 간격이 Chlorella vulgaris (C. vulgaris)의 증식률에 미치는 영향을 알아보고자 하였다. C. vulgaris (FC-16) ($3-8{\mu}m$)는 Jaworski's Medium 에 $22^{\circ}C$에서 15일 증식시킨 뒤 사용하였다. 실험을 위하여 네 개의 샘플을(Run 1: 225 mm 간격, Run 2: 150 mm 간격, Run 3: 112.5 mm 간격, Run 4: 90 mm 간격) 준비하여 도광판의 간격이 C. vulgaris의 증식률에 미치는 영향을 비교 실험하였다. 광효율은 Run 1이 86%, Run 2가 90%, Run 3가 92% 그리고 Run 4가 94%의 광효율을 나타내어 도광판의 간격이 짧을수록 광효율은 높았으며, 도광판의 간격에 따라 Run 1은 7일째, Run 2는 5일째, Run 3는 3일째 그리고 Run 4는 2일째에 최대 바이오매스 증식률을 나타내었다. 또한, 최대 증식률은 Run 4가 Run 1에 비해 3배 높았다. 그러나, 증식속도, 셀 당 클로로필 함량 및 단위면적 당 Cell volume 그리고 Doubling time은 Run 1과 Run 2에 비해 Run 3와 Run 4가 높았지만 Run 3과 Run 4는 크게 차이가 없었다. 따라서 경제적인 부분을 고려한다면 바이오매스의 대량생산을 위하여 Run 3의 사용이 가장 효율적이라 생각된다. measured, and the results for the toxic effect was not observed.

Keywords

References

  1. Haag, A. L., "Algae bloom again," Nature, 447, 520-521 (2007). https://doi.org/10.1038/447520a
  2. Masojidek, J. and Torzillo, G., "Mass cultivation of freshwater microalgae," In Encyclopedia of Ecology., Academic Press, Oxford, UK, 2226-2235(2008).
  3. Choi, H. J. and Lee, S. M., "Effect of temperature, light intensity and pH on the growth rate of Chlorella vulgaris," J. Kor. Soc. Environ. Eng., 33(7), 511-515(2011). https://doi.org/10.4491/KSEE.2011.33.7.511
  4. May o, A. W. and Noike, T. "Effects of temperature and pH on the growth of heterotrophic bacteria in waste stabilization pond," Water Res., 30(2), 447-455(1996). https://doi.org/10.1016/0043-1354(95)00150-6
  5. Wu, Z. and Shi, X., "Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model," Lett. Appl. Microbiol., 44(1), 13-18(2007). https://doi.org/10.1111/j.1472-765X.2006.02038.x
  6. Tadesse, I., Green, F. B. and Puhakka, J. A., "Seasonal and diurnal variations of temperatures, pH and dissolved oxygen in advanced integrated wastewater pond system treating tannery effluent," Water Res., 38(3), 645-654(2004). https://doi.org/10.1016/j.watres.2003.10.006
  7. Lee, Y. K., "Micoalgal mass culture systems and methods: their limitation and potential," J. Appl. Phycol., 13(4), 307-315(2001). https://doi.org/10.1023/A:1017560006941
  8. Moreno-Garrido, I., "Microalgae immobilization: current techniques and uses," Bioresour. Technol., 99(10), 3949-3964 (2008). https://doi.org/10.1016/j.biortech.2007.05.040
  9. Richmond, A. and Cheng-Wu, Z., "Optimization of a flat plate glass reactor for mass production of Nannochloropsis sp.," J. Biotechnol., 85(3), 259-269(2001). https://doi.org/10.1016/S0168-1656(00)00353-9
  10. Javanmardian, M. and Palsson, B. O., "High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system," Biotechnol. Bioeng., 38 (10), 1182-1189(1991). https://doi.org/10.1002/bit.260381010
  11. Suh, I. S. and Lee, C. G., "Photobioreactor engineering; Design and performance," Biotechnol. Bioproc. Eng., 8(6), 313-321(2003). https://doi.org/10.1007/BF02949274
  12. Lee, E. T. Y. and Bazin, M. J., "A laboratory scale air-lift helical photobioreactor to increase biomass output rate of photosynthetic algal cultures," New Phytol., 116(2), 331-335 (1990). https://doi.org/10.1111/j.1469-8137.1990.tb04722.x
  13. Hsieh, C. H. and Wu, W. T., "A novel photpbioreactor with transparent rectangular chambers for cultivation of microalgae," Biochem. Eng. J., 46(3), 300-305(2009). https://doi.org/10.1016/j.bej.2009.06.004
  14. Hu, G., Kurano, N., Kawachi, M., Iwasaki, I. and Miyachi, S., "Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor," Appl. Microbiol. Biotechnol., 49(6), 655-662(1998). https://doi.org/10.1007/s002530051228
  15. Torzillo, G., Carlozzi, P., Pushparaj, B., Montaini, E. and Materassi, R., "A two-plane tubular photobioreactor for outdoor culture of Spirulina," Biotech. Bioeng., 42(7), 891-898(1993). https://doi.org/10.1002/bit.260420714
  16. Choi, H. J. and Lee, S. M., "Effect of photo bioreactor with optical panel on the growth rate of Chlorella vulgaris," J. Kor. Soc. Environ. Eng., 34(7), 467-472(2012). https://doi.org/10.4491/KSEE.2012.34.7.467
  17. Ogbonna, J. C. and Tanaka, H., "Light requirement and photosynthetic cell cultivation-development of processes for efficient light utilization in photobioreactors," J. Appl. Phycol., 12(3-5), 207-218(2000b). https://doi.org/10.1023/A:1008194627239
  18. Lee, K. Y. and Lee, C. G., "Effect of light/dark cycles on wastewater treatments by microalgae," Biotechnol. Bioproc. Eng., 6(3), 194-199(2001). https://doi.org/10.1007/BF02932550
  19. Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J. and Chang, J. S., "Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review," Bioresour. Technol., 102(1), 71-81(2011). https://doi.org/10.1016/j.biortech.2010.06.159
  20. Grobbelaar, J. U., "Physiological and technological considerations for optimizing mass algal cultures," J. Appl. Phyco., 12(3-5), 201-206(2000). https://doi.org/10.1023/A:1008155125844
  21. Chisti, Y., "Biodiesel from microalgae," Biotechnol. Adv., 25(3), 294-306(2007). https://doi.org/10.1016/j.biotechadv.2007.02.001
  22. Alain, D., Jean, D., Francoise, P. and Lhoussaine, B., "Growth rate four freshwater algae in relation to light and temperature," Hydrobiol., 207(1), 221-226(2000).
  23. Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M. and Karube, I., "Chlorella strains from hot springs tolerant to high temperature and high $CO_2$," Energy Conv. Manage., 36(6-9), 693-696(1995). https://doi.org/10.1016/0196-8904(95)00100-R
  24. Sierra, E. Acien, Fernandez, J. M. Garcia, Gonzalez, C. and Molina, E., "Characterization of a flat plate photobioreactor for the production of microalgae," Chem. Eng. J., 138(1-3), 136-147(2008). https://doi.org/10.1016/j.cej.2007.06.004
  25. Jin, E., Polle, J. E. W., Lee, H. K., Hyun, S. M. and Chang, M., "Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application," J. Microbiol. Biotechnol., 13(2), 165-174(2003).
  26. Chen, X., Goh, Y. Q., Tan, W., Hossain, I., Chen, W. N. and Lau, R., "Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters," Bioresour. Technol., 102(10), 6005-6012(2011). https://doi.org/10.1016/j.biortech.2011.02.061
  27. Choi, I. S., "The microorganisms and industry," Kor. J. Microbiol., 30(2), 42-49(2004).