• 제목/요약/키워드: Rumen Fluid

검색결과 241건 처리시간 0.02초

사료 급여 방식에 따른 반추위액 내 휘발성지방산과 단당류 비교 분석과 대사산물 분석 (Comparison of Volatile Fatty Acids, Monosaccharide Analysis and Metabolic Profiling in Rumen Fluid According to Feeding Methods)

  • 엄준식;이신자;이유경;이성실
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.814-824
    • /
    • 2018
  • 거세한우 3두를 $3{\times}3$ Latin square design 시험방법에 적용하여 사료 적응 기간 10일 후 사료 급여 방식에 따른 반추위액 내 휘발성지방산과 단당류 비교 분석 및 대사산물 분석에 대한 연구를 수행하였다. 연구 결과 HPLC와 HPAEC에서 측정되지 않은 휘발성지방산과 단당류들은 $^1H-NMR$에서는 측정이 가능 한 것을 알 수 있었다. $^1H-NMR$에서 측정된 대사산물 중, carbohydrate 계열 대사산물 pyruvate는 사료 급여 전 반추위액에서만 측정 되었으며, succinate는 사료 급여 전 후에서 모두 측정 되었다. Amino acid 계열 대사산물은 총 9가지가 측정 되었다. Lipid 계열 대사산물 ethylene glycol는 사료 급여 전 Con구에서 유의적(P<0.05)으로 높게 측정 되었다. Aiphatic acylic compounds 계열 대사산물 trimethylamine N-oxide는 유의적인 차이는 보이지 않았다. 이번 연구를 통해 $^1H-NMR$를 이용하여 반추위액 내 많은 대사산물 측정이 가능한 것을 알 수 있었으며 사료 급여 전 후 급여 방식에 따라 대사산물의 변화가 나타나는 것을 확인 할 수 있었다.

Effect of Fungal Elimination on Bacteria and Protozoa Populations and Degradation of Straw Dry Matter in the Rumen of Sheep and Goats

  • Li, D.B.;Hou, X.Z.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권1호
    • /
    • pp.70-74
    • /
    • 2007
  • An in vitro study was carried out to investigate the differences in rumen microbes and fiber degradation capacity between sheep and goats. Three local male sheep and three Inner Mongolia male cashmere goats (aged 1.5 to 2 years; weight 25.0 to 32.0 kg) were each fitted with a permanent rumen cannula used to provide rumen fluid. Cycloheximide was used to eliminate rumen anaerobic fungi. The results showed that the quantities of fungal zoospores in the culture fluid of the control group were significantly greater in the sheep than in the goats; however, bacteria and protozoa counts were significantly higher in goats than in sheep. The digestibility of straw dry matter did not differ significantly between the two species before elimination of fungi, but tended to be higher for sheep (55.4%) than for goats (53.3%). The results also indicated that bacteria counts increased significantly after elimination of anaerobic fungi; however, the digestibility of straw dry matter significantly decreased by 12.1% and 8.6% for sheep and goats respectively. This indicated that the anaerobic fungi of the rumen played an important role in degradation of fiber.

INORGANIC SELENIUM FOR SHEEP II. ITS INFLUENCE ON RUMEN BACTERIAL YIELD, VOLATILE FATTY ACID PRODUCTION AND TOTAL TRACT DIGESTION OF TIMOTHY HAY

  • Serra, A.B.;Nakamura, K.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제7권1호
    • /
    • pp.91-96
    • /
    • 1994
  • This study was conducted to determine the effect of inorganic selenium (Se) sources on rumen bacterial yield, ruminal volatile fatty acid (VFA) production and total tract digestion of timothy hay (Phlewm pratense L.) in Japanese Corriedale wethers. A $3{\times}3$ Latin square design was used with three wethers, three periods and three treatments. In each period, there was 7 d dietary adjustment followed by 5 d total collection of urine and feces. Ruminal fluid samples were obtained at 0, 1, 3, 5 and 7 h postprandially on the final day of the collection period. The three dietary treatments were: (1) without Se supplementation (control); (2) with Se supplementation as sodium selenate; and (3) sodium selenite at a rate 0.2 mg Se/kg dietary DM. The basal diet was timothy hay fed at 2% of body weight/d. Results indicated that there was slight decrease in rumen bacterial yield of animal supplement with inorganic Se, however, differences over the control were insignificant. It was found that Se content of ruminal fluid was negatively correlated (p < 0.05) to rumen bacterial yield. The various VFA contents and acetate and propionate ratio of the different ruminal fluid samples were insignificant across treatment means and the same manner was observed to the different digestibilities (DM, OM, CP, NDF, ADF and NDS). This study concludes that Se supplementation at 0.2 mg Se/kg dietary DM either from sodium selenate or sodium selenite could not significantly influence rumen bacterial functions.

Ruminal Degradation of Sugarcane Stalk

  • Kawashima, T.;Sumamal, W.;Pholsen, P.;Chaithiang, R.;Hayashi, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권9호
    • /
    • pp.1280-1284
    • /
    • 2003
  • The number of protozoa and VFA content in the rumen fluid, in situ disappearance and turnover rate were examined with four rumen-fistulated cattle given either sugarcane stalk or Ruzi grass hay in order to clarify the manner of rumen digestion of sugarcane stalk. Cattle were given either sugarcane stalk or Ruzi grass hay at 1.0% of body weight level with commercial concentrate feed. Feeding sugarcane stalk reduced acetate content and increased propionate and butyrate contents in rumen fluid. While rapidlysoluble fraction of sugarcane stalk was 42%, the insoluble but potentially degradable fraction was only 17%. This clearly showed that sugarcane stalk mainly consisted of water soluble fraction (i.e. sugar) and tough fiber (i.e. bagasse). The ruminal degradation rate of both Ruzi grass hay and sugarcane stalk was lower in the animal given sugarcane stalk in comparison with those given Ruzi grass hay. While the turnover rate of liquid phase was about 50% higher in the animals given sugarcane stalk than in the animals given Ruzi grass hay, that of the solid phase was about 40% lower in the animals given sugarcane stalk. The effective degradability of DM of sugarcane stalk was higher than that of Ruzi grass hay. Sugarcane would be a promising roughage for ruminants in the tropics especially, in the dry season.

Effect of C18-polyunsaturated Fatty Acids on Their Direct Incorporation into the Rumen Bacterial Lipids and CLA Production In vitro

  • Choi, S.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.512-515
    • /
    • 2005
  • An in vitro study was conducted to determine the effect of C18-polyunsaturated fatty acid on direct incorporation into the rumen bacteria, bio-hydrogenation and production of CLA in vitro. Sixty milligrams of linoleic acid ($C_{18:2}$) or linolenic acid ($C_{18:3}$) were absorbed into the 0.5 g cellulose powder was added to the 150 ml culture solution consisting of 120 ml McDougall's buffer and 30 ml strained rumen fluid. Four uCi of 1-$^{14}C_{18:2}$ or 1-$^{14}C_{18:3}$ (1 uCi/15 mg each fatty acid) were also added to the corresponding fatty acids to estimate the direct incorporation into the bacterial lipids. The culture solution was then incubated anaerobically in a culture jar with stirrer at 39$^{\circ}C$ for 12 h. Ammonia concentration and pH of the culture solution were slightly influenced by the fatty acids. Amount of fatty acid incorporated into the bacteria was 1.20 mg and 0.43 mg/30 ml rumen fluid for $C_{18:2}$ and $C_{18:3}$, respectively during 12 h incubation. Slightly increased CLA (sum of cis-9, trans-11 and cis-10, trans-12 $C_{18:2}$) was obtained from the $C_{18:3}$ addition compared to that from $C_{18:2}$ after 12 h incubation in vitro.

Enhancing anaerobic digestion of vegetable waste and cellulose by bioaugmentation with rumen culture

  • Jo, Yeadam;Hwang, Kwanghyun;Lee, Changsoo
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.213-221
    • /
    • 2019
  • Anaerobic digestion (AD) has been widely used to valorize food waste (FW) because of its ability to convert organic carbon into $CH_4$ and $CO_2$. Korean FW has a high content of fruits and vegetables, and efficient hydrolysis of less biodegradable fibers is critical for its complete stabilization by AD. This study examined the digestates from different anaerobic digesters, namely Rs, Rr, and Rm, as the inocula for the AD of vegetable waste (VW) and cellulose (CL): Rs inoculated with anaerobic sludge from an AD plant, Rr inoculated with rumen fluid, and Rm inoculated with anaerobic sludge and augmented with rumen fluid. A total of six conditions ($3\;inocula{\times}2\;substrates$) were tested in serial subcultures. Biogas yield was higher in the runs inoculated with Rm than in the other runs for both VW (up to 1.10 L/g VS added) and CL (up to 1.05 L/g VS added), and so was biogas production rate. The inocula had different microbial community structures, and both substrate type and inoculum source had a significant effect on the formation and development of microbial community structures in the subcultures. The overall results suggest that the bioaugmentation with rumen microbial consortium has good potential to enhance the anaerobic biodegradability of VW, and thereby can help more efficiently digest high fiber-content Korean FW.

16S rDNA Analysis 9f Bacterial Diversity in Three Fractions of Cow Rumen

  • Cho, Soo-Jeong;Cho, Kye-Man;Shin, Eun-Chule;Lim, Woo-Jin;Hong, Su-Young;Choi, Byoung-Rock;Kang, Jung-Mi;Lee, Sun-Mi;Kim, Yong-Hee;Kim, Hoon;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.92-101
    • /
    • 2006
  • The bacterial diversity of the bovine rumen was examined using a PCR-based approach. 16S rDNA sequences were amplified and cloned from three fractions of rumen (solid, fluid, and epithelium) that are likely to represent different bacterial niches. A total of 113 clones were sequenced, and similarities to known l6S rDNA sequences were examined. About $47.8\%$ of the sequences had $90-97\%$ similarity to 16S rDNA database sequences. Furthermore, about $62.2\%$ of the sequences were $98-100\%$ similar to 16S rDNA database sequences. For the remaining $6.1\%$, the similarity was less than $90\%$. Phylogenetic analysis was also used to infer the makeup of the bacterial communities in the different rumen fractions. The Cytophaga-Flexibacter-Bacteroides group (CFB, $67.5\%$), low G+C Gram-positive bacteria (LGCGPB, $30\%$), and Proteobacteria $(2.5\%)$ were represented in the rumen fluid clone set; LGCGPB $(75.7\%)$, CFB$(10.8\%)$, Proteobacteria $(5.4\%)$, high G+C Gram-positive bacteria (HGCGPB, $5.4\%$), and Spirochaetes $(2.7\%)$ were represented in the rumen solid clone set; and the CFB group $(94.4\%)$ and LGCGPB $(5.6\%)$ were represented in the rumen epithelium clone set. These findings suggest that the rumen fluid, solid, and epithelium support different microbial populations that may play specific roles in rumen function.

Effect of Dietary Structural to Nonstructural Carbohydrate Ratio on Rumen Degradability and Digestibility of Fiber Fractions of Wheat Straw in Sheep

  • Tan, Z.-L.;Lu, D.-X.;Hu, M.;Niu, W.-Y.;Han, C.-Y.;Ren, X.-P.;Na, R.;Lin, S.-L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권11호
    • /
    • pp.1591-1598
    • /
    • 2002
  • The effect of different dietary structural carbohydrate (SC) to nonstructural carbohydrate (NSC) ratios on fiber degradation, digestion, flow, apparent digestibility and rumen fluid characteristics was studied with a design using 18 wethers fitted with permanent rumen and duodenum cannulae. All sheep were divided into six groups randomly, receiving six diets with varying SC to NSC ratios. All diets contained the same proportion of wheat straw and concentrate. The dietary SC to NSC ratios were adjusted by adding cornstarch to the concentrate supplements. The duodenal and fecal flows of dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose (HC) and cellulose (CEL) were estimated using chromium-mordanted wheat straw as a flow marker. The degradation parameters of wheat straw DM, NDF, ADF, HC and CEL were determined by incubating the ground wheat straw in nylon bags in the rumen for different periods of time. There was no effect (p>0.05) of the different dietary SC to NSC ratios on rumen pH or $NH_3$-N, but acetate, propionate and butyrate concentrations were significantly affected (p<0.05 or p<0.01) by dietary SC to NSC ratios in the rumen fluid. When the dietary SC to NSC ratio was 2.86, the highest rumen degradability of wheat straw DM, NDF, ADF and CEL was found, but the highest apparent rumen digestibilities of DM, NDF, ADF, HC and CEL occurred at a 2.64 SC to NSC ratio. However, because of compensatory digestion in the hindgut, the apparent digestibilities of DM, NDF, ADF, HC and CEL were highest when the dietary SC to NSC ratio was 2.40. In conclusion, there is a optimal range of dietary SC to NSC ratios (between 2.86 and 2.40) that is beneficial to maximize wheat straw fiber degradation and apparent digestibility.

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

Effects of a specific blend of essential oils on apparent nutrient digestion, rumen fermentation and rumen microbial populations in sheep fed a 50:50 alfalfa hay:concentrate diet

  • Khateri, N.;Azizi, O.;Jahani-Azizabadi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권3호
    • /
    • pp.370-378
    • /
    • 2017
  • Objective: An experiment was conducted to investigate the effects of a specific mixture of essential oils (MEO), containing thyme, clove and cinnamon EO, on rumen microbial fermentation, nutrient apparent digestibility and blood metabolites in fistulated sheep. Methods: Six sheep fitted with ruminal fistulas were used in a repeated measurement design with two 24-d periods to investigate the effect of adding MEO at 0 (control), 0.8, and 1.6 mL/d on apparent nutrient digestibility, rumen fermentation characteristics, rumen microbial population and blood chemical metabolites. Animals were fed with a 50:50 alfalfa hay:concentrate diet. Results: Ruminal pH, total volatile fatty acids (VFA) concentration, molar proportion of individual VFA, acetate: propionate ratio and methane production were not affected with MEO. Relative to the control, Small peptides plus amino acid nitrogen and large peptides nitrogen concentration in rumen fluid were not affected with MEO supplementation; while, rumen fluid ammonia nitrogen concentration at 0 and 6 h after morning feeding in sheep fed with 1.6 mL/d of MEO was lower (p<0.05) compared to the control and 0.8 mL/d of MEO. At 0 h after morning feeding, ammonia nitrogen concentration was higher (p<0.05) in sheep fed 0.8 mL/d of MEO relative to 1.6 mL/d and control diet. Ruminal protozoa and hyper ammonia producing (HAP) bacteria counts were not affected by addition of MEO in the diet. Relative to the control, no changes were observed in the red and white blood cells, hemoglobin, hematocrit, glucose, beta-hydroxybutyric acid, cholesterol, total protein, albumin, blood urea nitrogen and aspartate aminotransferase and alanine aminotransferase concentration. Apparent total tract digestibility of dry matter, crude proten, organic matter, and neutral detergent fiber were not influenced by MEO supplementation. Conclusion:The results of the present study suggested that supplementation of MEO may have limited effects on apparent nutrient digestibility, ruminal fermentation and protozoa and HAP bacteria count, blood cells and metabolites.