Browse > Article

16S rDNA Analysis 9f Bacterial Diversity in Three Fractions of Cow Rumen  

Cho, Soo-Jeong (Division of Applied Life Science, Gyeongsang national University)
Cho, Kye-Man (Division of Applied Life Science, Gyeongsang national University)
Shin, Eun-Chule (Division of Applied Life Science, Gyeongsang national University)
Lim, Woo-Jin (Division of Applied Life Science, Gyeongsang national University)
Hong, Su-Young (Division of Applied Life Science, Gyeongsang national University)
Choi, Byoung-Rock (Division of Applied Life Science, Gyeongsang national University)
Kang, Jung-Mi (Division of Applied Life Science, Gyeongsang national University)
Lee, Sun-Mi (Division of Applied Life Science, Gyeongsang national University)
Kim, Yong-Hee (Division of Applied Life Science, Gyeongsang national University)
Kim, Hoon (Department of Agricultural Chemistry, Sunchon National University)
Yun, Han-Dae (Division of Applied Life Science, Gyeongsang national University, Research Institute of Life Science, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.1, 2006 , pp. 92-101 More about this Journal
Abstract
The bacterial diversity of the bovine rumen was examined using a PCR-based approach. 16S rDNA sequences were amplified and cloned from three fractions of rumen (solid, fluid, and epithelium) that are likely to represent different bacterial niches. A total of 113 clones were sequenced, and similarities to known l6S rDNA sequences were examined. About $47.8\%$ of the sequences had $90-97\%$ similarity to 16S rDNA database sequences. Furthermore, about $62.2\%$ of the sequences were $98-100\%$ similar to 16S rDNA database sequences. For the remaining $6.1\%$, the similarity was less than $90\%$. Phylogenetic analysis was also used to infer the makeup of the bacterial communities in the different rumen fractions. The Cytophaga-Flexibacter-Bacteroides group (CFB, $67.5\%$), low G+C Gram-positive bacteria (LGCGPB, $30\%$), and Proteobacteria $(2.5\%)$ were represented in the rumen fluid clone set; LGCGPB $(75.7\%)$, CFB$(10.8\%)$, Proteobacteria $(5.4\%)$, high G+C Gram-positive bacteria (HGCGPB, $5.4\%$), and Spirochaetes $(2.7\%)$ were represented in the rumen solid clone set; and the CFB group $(94.4\%)$ and LGCGPB $(5.6\%)$ were represented in the rumen epithelium clone set. These findings suggest that the rumen fluid, solid, and epithelium support different microbial populations that may play specific roles in rumen function.
Keywords
Rumen; bacteria; molecular diversity; 16S rDNA; phylogeny;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 20  (Related Records In Web of Science)
연도 인용수 순위
1 Akin, D. E. and L. L. Rigsby. 1985. Degradation of bermuda and orchard grass by species of rumen bacteria. Appl. Environ. Microbiol. 50: 825-830
2 Amann, R. I., L. Krumholz, and D. A. Stahl. 1990. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172: 762-770   DOI
3 Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523   DOI   ScienceOn
4 Forster, R. J., M. F. Whitford, R. M. Teather, and D. O. Krause. 1998. Investigations into rumen microbial diversity using molecular cloning and probing techniques, pp. 16-24. In R. Onodera, H. Itabashi, K. Ushida, H. Yano, and Y. Sasaki (eds.), Genetics, Biochemistry, and Ecology of Cellulose Degradation. Sukuka, Japan
5 Hold, G. L., S. E. Pryde, V. J. Russell, E. Furrie, and H. J. Flint. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39: 33-39   DOI
6 Kirchman, D. L. 2002. The ecology of Cytophaga- Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39: 91-100
7 Krause, D. O., S. E. Denman, R. I. Mackie, M. Morrison, A. L. Rae, G. T. Attwood, and C. S. Mcsweeney. 2003. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 27: 663-693   DOI   ScienceOn
8 Moune, S., P. Caumette, R. Matheron, and J. C. Willison. 2003. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol. Ecol. 44: 117-130   DOI   ScienceOn
9 Owens, F. N., D. S. Secrist, W. J. Hil, and D. R. Gill. 1998. Acidosis in cattle: A review. J. Anim. Sci. 76: 275-286
10 Skillman, L. C., P. N. Evans. G. E. Naylor, B. Morvan, G. N. Jarvis, and K. N. Joblin. 2004. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonizing young lambs. Anaerobe 10: 277- 285   DOI   ScienceOn
11 Latham, M. J., B. E. Brooker, J. L. Pettipher, and P. J. Harris. 1978. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 35: 1166-1173
12 Saito, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
13 Madden, T. L., R. L. Tatusov, and J. Zhang. 1996. Application of network BLAST server. Method Enzymol. 266: 131-141   DOI
14 Shin, E. C., K. M. Cho, W. J. Lim, S. Y. Hong, C. L. An, E. J. Kim, Y. K. Kim, B. R. Choi, J. M. An, J. M. Kang, H. Kim, and H. D. Yun. 2004. Phylogenetic analysis of protozoa in the rumen contents of cow based on the 18S rDNA sequences. J. Appl. Microbiol. 97: 378-383   DOI   ScienceOn
15 Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54: 1079-1084
16 Tompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI
17 Zeng, X., X. Xiao, P. Wang, and F. Wang. 2004. Screening and characterization of psychrotrophic, lipolytic bacteria from deep-sea sediments. J. Microbiol. Biotechnol. 14: 952- 958
18 Tajima, K., R. Aminov, T. Nagamine, K. Ogata, M. Nakamura, H. Matsui, and Y. Benno. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries. FEMS Microbiol. Ecol. 29: 159-169   DOI
19 Vandamme, P., B. Pot, M. Gillis, P. De Vos, K. Kersters, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407- 438
20 Kim, B.-S., H.-M. Oh, H. J. Kang, S.-S. Park, and J. S. Chun. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14: 205-211
21 Wilson, K. H. and R. B. Blitchington. 1996. Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62: 2273-2278
22 Gong, J., R. J. Forster, H. Yu, J. R. Chambers, R. Wheatcrof, P. M. Sabour, and S. Chen. 2002. Molecular analysis of bacterial populations in the ileum of broiler chickens and comparison with bacteria in the cecum. FEMS Microbiol. Ecol. 41: 171-179   DOI
23 Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Nakamura, R. I. Aminov, and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6: 273-284   DOI   ScienceOn
24 Lane, D. J. 1991. Nucleic acids techniques in bacterial systematics, pp. 115148. In E. Stackebrandt, and M. Goodfellow (eds.), 16S/23S rRNA Sequencing. Chichester, John Wiley and Sons
25 Wintzingerode, F., U. B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229   DOI
26 Shin, E. C., B. R. Choi, W. J. Lim, S. Y. Hong, C. L. An, K. M. Cho, Y. K. Kim, J. M. An, J. M. Kang, S. S. Lee, H. Kim, and H. D. Yun. 2004. Phylogenetic analysis of archea in three fractions of cow rumen based on the 16S rDNA sequence. Anaerobe 10: 313-319   DOI   ScienceOn
27 Kim, S. H., K.-Y. Kim, C. H. Kim, W. S. Lee, M. Chang, and J.-H. Lee. 2004. Phylogenetic analysis of harmful algal bloom (HAB)-causing dinoflagellates along the Korean coasts, based on SSU rRNA gene. J. Microbiol. Biotechnol. 14: 956-966
28 Krause, D. O. and J. B. Russell. 1996. How many ruminal bacteria are there? J. Dairy Sci. 79: 1467-1475   DOI   ScienceOn
29 Whitford, M. F., R. J. Foster, C. E. Beard, J. Gong, and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4: 153-163   DOI   ScienceOn
30 Kim, M.-K., H.-S. Kim, B.-O. Kim, S. Y. Yoo, J.-H. Seong, D.-K. Kim, S. E. Lee, S.-J. Choe, J.-C. Park, B.-M. Min, M.-J. Jeong, D. K. Kim, Y.-K. Shin, and J.-K. Kook. 2004. Multiplex PCR using conserved and species-specific 16S rDNA primers for simultaneous detection of Fusobacterium nucelatum and Actinobacillus actinomycetemcomitans. J. Microbiol. Biotechnol. 14: 110-115
31 Farrelly, V., F. A. Rainey, and E. Stackebrandt. 1995. Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798-2801
32 Han, K. D., Y.-T. Jung, and S.-Y. Son. 2003. Phylogenetic analysis of phenanthrene-degrading Sphingomonas. J. Microbiol. Biotechnol. 13: 942-948
33 Mitsumori, M., N. Ajisaka, K. Tajima, H. Kajikawa, and M. Kurihara. 2002. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 35: 251-255   DOI   ScienceOn
34 Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143- 169
35 Bae, J.-W., J.-J. Kim, C. O. Jeon, K. Kim, J. J. Song, S.-G. Lee, H. Poo, C.-M. Jung, Y.-H. Park, and M.-H. Sung. 2003. Application of denaturing gradient gel electrophoresis to estimate the diversity of commensal thermophiles. J. Microbiol. Biotechnol. 13: 1008-1011
36 Kim, M.-H., S. T. Shin, Y. S. Kim, and K. H. Kyung. 2002. Diversity of Leuconostocs on garlic surface, and extreme environment. J. Microbiol. Biotechnol. 12: 497-502
37 Whitford, M. F., R. M. Teather, and R. J. Forster. 2001. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol. 1: 5   DOI
38 Lee, S.-H., H.-R. Oh, J.-H. Lee, S.-J. Kim, and J.-C. Cho. 2004. Cold-seep sediment harbors phylogenetically diverse uncultured bacteria. J. Microbiol. Biotechnol. 14: 906-913
39 Zhu, W. Y., B. A. Williams, S. R. Konstantinov, S. Tamminga, W. M. De Vos, and A. D. L. Akkermans. 2003. Analysis of 16S rDNA reveals bacterial shift during in vitro fermentation of fermentable carbohydrate using piglet faeces as inoculum. Anaerobe 9: 175-180   DOI   ScienceOn
40 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr, P. R. Saxman, J. M. Stredwick, G. M. Li, B. Garrity, G. J. Olsen, S. Pramanik, T. M. Schmidt, and J. M. Tiedje. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174   DOI
41 Nocek, J. E. 1997. Bovine acidosis: Implication on laminitis. J. Dairy Sci. 80: 1005-1028   DOI   ScienceOn
42 Schroeder, C. M., K. W. Parlor, T. L. Marsh, N. K. Ames, A. K. Goeman, and R. D. Walker. 2003. Characterization of the predominant anaerobic bacterium recovered from digital dermatitis lesions in three Michigan dairy cows. Anaerobe. 9: 151-155   DOI   ScienceOn