• Title/Summary/Keyword: Rubber forming

Search Result 62, Processing Time 0.027 seconds

Progressive Process Design for Delta Sash in Vehicles (차량용 델타샤시의 프로그레시브 공정 설계)

  • Ko, Young Jun;Kwak, Hyo Seo;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1161-1170
    • /
    • 2014
  • Delta sash is an important part of automobile door, which has the functions of supporting and guiding seesaw of car's window, preventing dust and air from outside. In previous manufacturing process, each part of the delta sash was independently formed by tandem processes, and rubber is bonded to steel by poisonous glue. So, the previous processes, including roll forming process and toxic gases, had low production rate and high failure rate. In this study, progressive process design of the delta sash was proposed in order to increase productivity and high utilization of the materials. And instead of the poisonous glue used for adhesion of rubber in the previous tandem process, embossing and piercing processes were designed in the new guide to help the rubber to adhere well to steel. And the optimal piercing distance was designed to ensure structural safety, and prototypes were manufactured for verifying reliability of the processes.

Development of Rubber Chemicals Automatic Mixed System for Toxic Chemical Block (유해화학물질 차단을 위한 고무약품 배합자동화장치 개발)

  • Kim J.Y.;Song K.S.;Chol C.J.;Kwak N.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.305-306
    • /
    • 2006
  • In process for production of Rubber Scheme Product that have the most inferior Working Environment is Medicine mixture and Scheme processing. Applying automation and Environment Treatment technology to the hazardous chemical and mixture processing, Through developed 'Mixture Automatic Machine for hazardous chemical Interruption type that is occurred at mixing rubber medicines', we try to decline worker's intensity of labour, Also overcomes solution of work evasion phenomenon and manpower supply and demand's difficulty by forming agreeable working environment and through the automatic scheme and mixture processing by preventing that hazardous chemical had known as disease causes of various importance disease is exposed to worker during the work. and we plan to do so that production of high added value product may be available.

  • PDF

The Comparative Study on Attached Performance of the Rubber Asphalt Membrane-Sheet Composite Waterproof by Difference of the Specific Gravity of the Petroleum Resin (석유수지 비중차를 이용한 고무아스팔트 도막-시트 복합방수의 부착성능 비교 연구)

  • Yoon, Sung Hwan;Park, Wan Goo;Kim, Dong Bum;Park, Jin Sang;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.130-131
    • /
    • 2017
  • The combined waterproofing technique, which forms the waterproofing layer of two or more substances, is characterized by forming a waterproof layer, which is characterized by the formation of waterproof layers and the thickness of the waterproofing layer is inherently formed. In this study, it is intended to verify the integrity of the material through the manufacture of materials for special purpose waterproofing methods, primarily for the manufacture of composite waterproofing materials and composite waterproofing methods using cement materials and materials.

  • PDF

Effect of Silicone Rubber Content on Thermal Stabilities of EPDM/Silicone Blends (실리콘고무 함량이 EPDM 고무의 열적 안정성에 미치는 영향)

  • Park, Soo-Jin;Kim, Jong-Hak;Joo, Hyeok-Jong;Jin, Fan-Long
    • Elastomers and Composites
    • /
    • v.40 no.4
    • /
    • pp.266-271
    • /
    • 2005
  • In this work, the thermal stability factors, such as the thermal decomposition temperature, decomposition activation energy ($E_d$), and char yield, were measured to investigate the effect of silicone rubber (SR) content on the thermal stabilities of EPDM/SR blends. As a result, the thermal decomposition curve of EPDM/SR blends was similar to the neat EPDM rubber at 10 wt% SR and the thermal decomposition temperature increased above this content. The $E_d$ value of EPDM rubber initially decreased and then was constant above 20 wt% weight losses. The $E_d$ of EPDM/SR blends was higher than that of the neat EPDM rubber and then decreased with increasing the weight loss when the SR content was in the range of 10-20 wt%. Whereas the $E_d$ of the blends was lower than that of the EPDM rubber and then decreased with increasing the weight loss when 30 wt% SR was added. The char yield at $800^{\circ}C$ increased with increasing the SR content, because the decomposition of silane groups in the backbone was capable of forming a silane-rich residue after the initial stage of thermal degradation, which finally prevents further heat transfer and diffusion in the blends.

Development of a process to apply uniform pressure to bond CFRP patches to the inner surface of undercut-shaped sheet metal parts (언더컷 형상의 판재 성형품에 보강용 CFRP 패치의 접합을 위한 공정기술 개발)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Cho, Hoon;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2020
  • Partial reinforcement of sheet metal parts with CFRP patch is a technology that can realize ultra-lightweight body parts while overcoming the high material cost of carbon fiber. Performing these patchworks with highly productive press equipment solves another issue of CFRP: high process costs. The A-pillar is the main body part and has an undercut shape for fastening with other parts such as roof panels and doors. Therefore, it is difficult to bond CFRP patches to the A-pillar with a general press forming tool. In this paper, a flexible system that applies uniform pressure to complex shapes using ceramic particles and silicone rubber is proposed. By benchmarking various A-pillars, a reference model with an undercut shape was designed, and the system was configured to realize a uniform pressure distribution in the model. The ceramic spherical particles failed to realize the uniform distribution of high pressure due to their high hardness and point contact characteristics, which caused damage to the CFRP patch. Compression equipment made of silicone rubber was able to achieve the required pressure level for curing the epoxy. Non-adhesion defects between the metal and the CFRP patch were confirmed in the area where the bending deformation occurred. This defect could be eliminated by optimizing the process conditions suitable for the newly developed flexible system.

A Study on the Status of Working Environment of Some Rubber and Chemical Products Manufacturing Industries in Busan (고무와 화학제품 제조업 산업장의 작업환경실태에 관한 조사연구)

  • Kim, J.Y.;Lee, C.U.;Pae, K.T.;Kim, J.H.;Kim, J.O.;Kim, D.K.;Kim, Y.W.;Chun, C.H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.14 no.1
    • /
    • pp.97-110
    • /
    • 1981
  • This study was conducted in order to investigate the status of harmful working environ ment on twelve rubber and ten chemical products manufacturing industries in Busan area over a period of five months from lune 1 to October 31, 1980. The summarized results were as follows: 1. The highest and lowest mean values of harmful environmental elements in workroom of rubber products manufacturing industries were noted in twisting (98.7dB) and coating department (77.3dB) to noise, molding ($6.43mg/m^3$) and forming ($1.33mg/m^3$) to dust, bonding (toluene 463.7ppm, xylene 457.8ppm and benzene 111.8ppm, respectively) and splicing (toluene 90.0ppm, xylene 83.3ppm and benzene 6.7ppm, respectively) to organic solvents, respectively. Also in chemical products manufacturing, they were noted in grinding (95.1dB) and shining department (76.8dB) to noise, packing ($4.30mg/m^3$) and staining ($3.20mg/m^3$) to dust, shining (393.3ppm and 375.0ppm, respectively) and varnishing(125.5ppm and 121.7ppm, respectively) to toluene and xylene, and scattering (51.8ppm) and mixing (23.9ppm) to benzene, respectively. 2. The mean values of harmful elements in workroom of rubber products manufacturing were 86.3dB to noise, $4.16mg/m^3$ to dust, 258.2ppm to toluene, 230.3ppm to xylene, and 5 4.0ppm to benzene, respectively. Also in chemical products manufacturing, they were 85.2dB to noise, $3.69mg/m^3$ to dust, 227.9ppm to toluene, 213.2ppm to xylene, and 36.3ppm to benzene, respectively. 3. Number of workers exposed to harmful working environment, over TLV, of a total 10,195 workers in rubber products manufacturing were 1,002(9.8%) to noise, 212 (2.1%) to dust, 1,581(15.5%) to toluene, 1,509(14,8%) to xylene, and 1,524(15.0%) to benzene, respectively. Number of workers exposed to harmful working environment, over TLV, of a 1,913 workers in chemical products manufacturing were 112(5.9%) to noise, 132(6.9%) to each organic solvent, respectively. 4. The values of noise and dust of rubber and chemical products manufacturing in 1980 were lower then those in 1977, but the value of organic solvent in 1980 was similar with that in 1977.

  • PDF

An Experimental Study on the Evaluation of Fastening Unit Insulation Developed for the Insulation of Curtain Wall

  • Kim, Bong-Joo;Kim, Kyeong-A
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.243-256
    • /
    • 2012
  • This study is the experimental study to improve the insulation of the fastening unit system, which has the most vulnerable insulation in the curtain walls. The Fastening Units were designed and fabricated to minimize the connection part of mullions. In addition, slight movements were taken into account and the performance of the middle layer was evaluated by forming an insulation layer with the vibration-proof rubber and the silicon to satisfy the mechanical and thermal performance criteria. A total of 10 experiments were performed under various conditions, such as indoor-outdoor temperature difference, type of insulation material, thickness of insulation material, and others. using the fabricated Fastening Units. As a result, the vibration-proof rubber insulation showed the temperature difference of $2.2^{\circ}C-5.0^{\circ}C$, and the silicon insulation showed the temperature difference of $2.8^{\circ}C-4.5^{\circ}C$, compared to the non-insulated Fasteniirature difference, typesng Units. When these results were compared with the psychometric chart graph, the insulated Fastening Unit designed in this study can be considered to prevent the dew condensation.

Punching of Micro-Hole Array (미세 홀 어레이 펀칭 가공)

  • Son Y. K.;Oh S. I.;Rhim S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.193-197
    • /
    • 2005
  • This paper presents a method by which multiple holes of ultra small size can be punched simultaneously. Silicon wafers were used to fabricate punching die. Workpiece used in the present investigation were the rolled pure copper of $3{\mu}m$ in thickness and CP titanium of $1.5{\mu}m$ in thickness. The metal foils were punched with the dies and arrays of circular and rectangular holes were made. The diameter of holes ranges from $2-10{\mu}m$. The process set-up is similar to that of the flexible rubber pad forming or Guerin process. Arrays of holes were punched successfully in one step forming. The punched holes were examined in terms of their dimensions, surface qualities, and potential defect. The effects of the die hole dimension on ultra small size hole formation of the thin foil were discussed. The optimum process condition such as proper die shape and diameter-thickness ratio (d/t) were also discussed. The results in this paper show that the present method can be successfully applied to the fabrication of ultra small size hole array in a one step operation.

  • PDF

A Study On The Robust Structure For Improvement of Front Insulator Noise Improvement (전륜 Insulator 이음 개선을 위한 강건 구조 방안 연구)

  • Lee, Sang Jong
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.197-206
    • /
    • 2017
  • Purpose: Clarify the cause of the noise by the front wheel strut insulator, which is located in close proximity to the driver's seat. Methods: The improvement mechanism was confirmed through failure analysis and reproduction test of the joint generation mechanism. In addition, the main factors were analyzed through principal test. Results: This paper describes the mechanism of occurrence of noise due to deterioration and hardness increase of rubber, deformation on severe road surface, foreign matter and water inflow in cold weather. Conclusion: We found that the insulator and body deformation can be minimized without increasing the thickness of the body and the insulator and reinforcing the body by dispersing the input load by applying load distribution structure instead of the local forming structure of the insulator in the insulator robust structure.

3-Dimensional Thermoforming Computer Simulation Considering Orthotropic Property of Film

  • Son, Hyun-Myung;Yoon, Seok-Ho;Lee, Ki-Ho;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.114-120
    • /
    • 2022
  • The tensile properties of the extruded PC film were measured in the extrusion direction and perpendicular to the extrusion direction. The measured properties were the elastic modulus and Poisson's ratio at the glass transition temperature of PC. The measured orthotropic properties of the film were used for the computer simulation of vacuum forming. In this simulation, three mold shapes were tested: dome, trapezoid, and cubic, and the vacuum was applied between the mold surface and the heated film. The stress, strain, thickness, and stretch ratio distributions of the film in different mold shapes were observed and compared. The thermoforming simulation method used in this study and the obtained results, considering the determined orthotropic properties, can be applied to the thermoforming of various three-dimensional shapes.