• 제목/요약/키워드: Ru (Ruthenium)

검색결과 187건 처리시간 0.025초

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

구리 합금을 위한 초고융점 원소의 용융산화물 확산 공정 (Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys)

  • 송정호;노윤영;송오성
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.130-135
    • /
    • 2016
  • To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ at the temperature of $1200^{\circ}C$ in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of $1200^{\circ}C$.

알칼리 수전해에서 전극재질에 따른 수소생산 특성 (The Characteristics of Hydrogen Production According to Electrode Materials in Alkaline Water Electrolysis)

  • 문광석;박대원
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.34-39
    • /
    • 2015
  • 본 연구에서는 중온에서 수소생산이 가능한 무격막형 알칼리수전해 장치를 제작하여 전극재질에 따른 수소생산 특성을 확인하였다. 전극재질($IrO_2/Ti$, $RuO_2/Ti$, Ti)별 전기화학적 특성을 확인한 결과 $RuO_2/Ti$에서 가장 높은 효율을 나타내었고, 전해질 농도별 수소생산량 실험 결과, 전해질 농도와 수소생산량은 비례하는 경향을 보였으며 30% KOH 조건에서 $118.9m^3/m^3/day$로 가장 높은 수소생산량을 확인할 수 있었다. 전극재질별 수소생산량을 확인한 실험에서는 anode($IrO_2/Ti$)와 cathode($RuO_2/Ti$)로 조합 시 $157.55m^3/m^3/day$$IrO_2/Ti$를 cathode로 조합한 결과에 비해 약 6.97% 높은 수소생산량을 보였다. 이는 DSA전극의 전기화학적 활성도 향상에 의한 수소생산량 증대와 기존 전극에 비해 내구성이 향상되어 안정적인 알칼리 수전해가 가능한 것으로 사료된다.

Molecular Conductance Switching Processes through Single Ruthenium Complex Molecules in Self-Assembled Monolayers

  • 서소현;이정현;방경숙;이효영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.27-27
    • /
    • 2011
  • For the design of real applicable molecular devices, current-voltage properties through molecular nanostructures such as metal-molecule-metal junctions (molecular junctions) have been studied extensively. In thiolate monolayers on the gold electrode, the chemical bonding of sulfur to gold and the van der Waals interactions between the alkyl chains of neighboring molecules are important factors in the formation of well-defined monolayers and in the control of the electron transport rate. Charge transport through the molecular junctions depends significantly on the energy levels of molecules relative to the Fermi levels of the contacts and the electronic structure of the molecule. It is important to understand the interfacial electron transport in accordance with the increased film thickness of alkyl chains that are known as an insulating layer, but are required for molecular device fabrication. Thiol-tethered RuII terpyridine complexes were synthesized for a voltage-driven molecular switch and used to understand the switch-on mechanism of the molecular switches of single metal complexes in the solid-state molecular junction in a vacuum. Electrochemical voltammetry and current-voltage (I-V) characteristics are measured to elucidate electron transport processes in the bistable conducting states of single molecular junctions of a molecular switch, Ru(II) terpyridine complexes. (1) On the basis of the Ru-centered electrochemical reaction data, the electron transport rate increases in the mixed self-assembled monolayer (SAM) of Ru(II) terpyridine complexes, indicating strong electronic coupling between the redox center and the substrate, along the molecules. (2) In a low-conducting state before switch-on, I-V characteristics are fitted to a direct tunneling model, and the estimated tunneling decay constant across the Ru(II) terpyridine complex is found to be smaller than that of alkanethiol. (3) The threshold voltages for the switch-on from low- to high-conducting states are identical, corresponding to the electron affinity of the molecules. (4) A high-conducting state after switch-on remains in the reverse voltage sweep, and a linear relationship of the current to the voltage is obtained. These results reveal electron transport paths via the redox centers of the Ru(II) terpyridine complexes, a molecular switch.

  • PDF

A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions

  • Song, Ji-Seon;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1683-1688
    • /
    • 2007
  • This paper presents a novel simple method for introducing gold nanoparticles in a poly(4-vinylpyridine) (PVP) polymer layer over a glassy carbon (GC) electrode with the aim of forming a tunable electrochemical interface against a cationic ruthenium complex. Initially, AuCl4 ? ions were spontaneously incorporated into a polymer layer containing positively charged pyridine rings in an acidic media by ion exchange. A negative potential was then applied to electrochemically reduce the incorporated AuCl4 ? ions to gold nanoparticles, which was confirmed by the FE-SEM images. The PVP layer with an appropriate thickness over the electrode blocked electron transfer between the electrode and the solution phase for the redox reactions of the cationic Ru(NH3)6 2+ ions. However, the introduction of gold nanoparticles into the polymer layer recovered the electron transfer. In addition, the electron transfer rate between the two phases could be tuned by controlling the number density of gold nanoparticles.

혈액중 포도당과 젖산의 분석을 위한 광섬유 생물센서 (Fiber-optic biosensor for analysis of glucose and lactate in blood samples)

  • 손옥재;이종일
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.28-33
    • /
    • 2006
  • Optical-fiber sensors have been developed to determine the concentrations of glucose and lactic acid in blood samples. Fluorescence dye [tris(2,2'-biphenyridine)-ruthenium(II)-chloride (RuBPY)] was entrapped by using a silicon to the unclad tip of a glass optic fiber. Enzymes like glucose oxidase (GOD) and lactate oxidase (LOD) have been immobilized by acrylamide resin adhesive, adsorption with zeolite or covalent bonding with aminopropyl-triethoxysilan. The fiber-optic glucose/lactate sensor was then used to analyze the concentrations of glucose and lactate in blood samples. The results were compared with the results of HPLC analysis and their difference was in error by less then 5 %.

함(含)루테늄 스크랩으로부터 질산침출(窒酸浸出)에 의한 불순물(不純物) 제거(除去) (Removal of impurities from the rutenium containing scraps by nitric acid leaching)

  • 안재우;정동화;서재성;이기웅;이강명;이재훈
    • 자원리싸이클링
    • /
    • 제18권5호
    • /
    • pp.26-36
    • /
    • 2009
  • 폐스크랩으로부터 Ru을 회수하기 위한 전처리 공정으로 질산을 침출제로 사용하여 Pb, Ba, Zn, Al, Bi, Ag Fe, Co, Zr, Si 등의 침출 거동을 고찰하고, 이들 성분들을 제거 할 수 있는 최적조건을 도출하고자 하였다. 실험결과 고액농도 250 g/L에서 10-15% 질산 용액으로 약 90%의 Pb를 침출시켜 제거할 수 있었다. 또한 Ba의 경우도 Pb와 유사한 침출 거동을 나타내었으며, 기타 금속원소들 중 Zn, Al, Bi, Ag, Fe, Co, Zr은 질산농도 증가에 따라 침출율이 증가하나 질산농도가 10% 이상에서는 침출율이 거의 일정하였다. 한편, Ru의 경우는 약 100 ppm 이하로 침출율이 미미하였고, 질산침출 후 잔사중에 Ru이 50%이상으로 농축됨을 알 수 있었다.

유기전해액에서 루테늄산화물 전극의 전기화학적 특성 (Electrochemical Characteristics of Ruthenium Oxide Electrode-Organic Electrolyte System)

  • 도칠훈;진봉수;문성인;윤문수;최상진;육경창;박정식;김상길;이주원
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.169-173
    • /
    • 2003
  • 금속산화물 전극을 이용한 전기화학 캐패시터는 일반적으로 산성 수용액 전해질에서 금속산화물에 대한 양성자의 가역적인 전기화학반응을 이용한다. 수계 전해질을. 사용한 수퍼캐패시터는 전위창(electrochemical stability window)이 유기계 전해질을 사용한 수퍼캐패시터에 비해 좁은 문제를 안고 있다. 금속산화물 전극과 리튬 또는 암모늄 이온을 함유한 유기계 전해질을 사용한 전기화학 캐패시터의 특성을 확인하였다. $RuO_2$ 전극을 사용한 전기화학 캐패시터는 1M $LiPF_6$, EC, DEC 및 EMC혼합용매 전해액 중에서 순환전위전류법(주사속도. 2mV/sec, 전위영역: $2.0\~4.2V(Li|Li^+))$으로 산화 및 환원에 대하여 비정전용량을 구한 바, 각각 145 및 $142F/g-RuO_2{\cdot}nH_2O$이었다

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

Anomalous Luminescence and Emission Quenching Behaviors of Tris(2,2$^\prime$-bipyridine)Ruthenium(Ⅱ) in Poly(methacrylic acid) Solutions$^1$

  • Park, Joon-Woo;Paik, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권2호
    • /
    • pp.137-142
    • /
    • 1986
  • The luminescence spectra of $Ru(bpy)_3^{2+}$ in poly(methacrylic acid) (PMA) solutions varied sensitively with pH. At pH < 5.5, the emission intensity increased with pH up to 4 times, while it decreased with pH beyond the pH. The enhanced emission intensity was accompanied by blue-shift of the emission maxima as much as 15 nm. The enhancement of emission intensity was attributed to the restricted rotational mobility of ligand of the cation bound to densely coiled PMA molecules at pH < 5.5. The sharp decrease in emission intensity with increasing pH near pH 5.6 was accounted for conformational transition of the polymer to more extended structure, which was also revealed in viscosity measurement. The enhancement of emission intensity became higher as NaCl concentration of the solution increased. The binding constant of $Ru(bpy)_3^{2+}$ with two carboxylate groups of PMA was calculated as $2{\times}10^5\;M^{-1}$ in 0.1 M NaCl at pH 5.2. The pH dependence of luminescence quenching rate of $Ru(bpy)_3^{2+}$ by $Cu^{++}$ also showed maximum near pH 5, and the rate was more than $10^3$ times higher than that in water, whereas the maximum enhancement of quenching rate (about 20 times) in poly(acrylic acid) (PAA) solution occurred at pH 4.5. On the other hand, the pH dependence for neutral water soluble nitrobenzene (NB) exhibited opposite trend to that of $Cu^{++}$. The quenching constant vs pH curve for $MV^{++}$ was composite of those for $Cu^{++}$ and NB. The anomalous high quenching rate for $Cu^{++}$ in PMA solution at pH < 5.5 was attributed to the binding of $Ru(bpy)_3^{2+}$ and $Cu^{++}$ to the same region of PMA, when it conforms densely coiled structure in the pH range. The observation of mininium quenching rate for NB near pH 5.5 indicated that the $Ru(bpy)_3^{2+}$ bound to the densely coiled PMA is not accessible by NB, which is in bulk water phase. The composite nature of the pH dependence of quenching rate for $MV^{++}$ in PMA solution was attributed to the smaller binding affinity of the cation to PMA, compared to that of $Cu^{++}$. The sharp, cooperative conformational transition with pH observed in PMA was not revealed in PAA. But, the pH dependence of quenching rates in this polymer reflected increased charge density and, thus, binding of cations to the polymer, and expansion of the polymer chain with pH.