DOI QR코드

DOI QR Code

Diffusion of the High Melting Temperature Element from the Molten Oxides for Copper Alloys

구리 합금을 위한 초고융점 원소의 용융산화물 확산 공정

  • Song, Jeongho (Department of Materials Science and Engineering, University of Seoul) ;
  • Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • 송정호 (서울시립대학교 신소재공학과) ;
  • 노윤영 (서울시립대학교 신소재공학과) ;
  • 송오성 (서울시립대학교 신소재공학과)
  • Received : 2015.10.05
  • Accepted : 2016.01.21
  • Published : 2016.03.27

Abstract

To alloy high melting point elements such as boron, ruthenium, and iridium with copper, heat treatment was performed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ at the temperature of $1200^{\circ}C$ in vacuum for 30 minutes. The microstructure analysis of the alloyed sample was confirmed using an optical microscope and FE-SEM. Hardness and trace element analyses were performed using Vickers hardness and WD-XRF, respectively. Diffusion profile analysis was performed using D-SIMS. From the microstructure analysis results, crystal grains were found to have formed with sizes of 2.97 mm. For the copper alloys formed using metal oxides of $B_2O_3$, $RuO_2$, and $IrO_2$ the sizes of the crystal grains were 1.24, 1.77, and 2.23 mm, respectively, while these sizes were smaller than pure copper. From the Vickers hardness results, the hardness of the Ir-copper alloy was found to have increased by a maximum of 2.2 times compared to pure copper. From the trace element analysis, the copper alloy was fabricated with the expected composition. From the diffusion profile analysis results, it can be seen that 0.059 wt%, 0.030 wt%, and 0.114 wt% of B, Ru, and Ir, respectively, were alloyed in the copper, and it led to change the hardness. Therefore, we verified that alloying of high melting point elements is possible at the low temperature of $1200^{\circ}C$.

Keywords

References

  1. J. S. Lin, C. C. Chen, E. W. G. Diau and T. F. Liu, J. Mater. Process. Technol., 206, 425 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.069
  2. C. Cretu and E. V. D. Lingen, Gold Bull., 32, 115 (1999). https://doi.org/10.1007/BF03214796
  3. W. S. Rapson, Gold Bull., 23, 125 (1990). https://doi.org/10.1007/BF03214713
  4. X. J. Zhang, K. K. Tong, R. Chan and M. Tan, J. Mater. Process. Technol., 48, 603 (1995). https://doi.org/10.1016/0924-0136(94)01699-2
  5. M. J. Lagos, P. A. S. Autreto, J. Bettini, F. Sato, S. O. Dantas, D. S. Glavao and D. Ugarte, J. Appl. Phys., 117, 094301 (2015). https://doi.org/10.1063/1.4913625
  6. D. Ott and C. J. Raub, Gold Bull., 14, 69 (1981). https://doi.org/10.1007/BF03214600
  7. C. Gross, W. Assumus, A. Muiznieks, A. Muhlbauer, C. Stenzel and O. Schulz, J. Cryst. Growth, 198-199, 188 (1999). https://doi.org/10.1016/S0022-0248(98)01093-8
  8. H. Nishiyama, T. Sawada, H. Takana, M. Tanaka and M. Ushio, ISIJ Int., 46, 705 (2006). https://doi.org/10.2355/isijinternational.46.705
  9. S. Berendts and M. Lerch, J. Cryst. Growth, 336, 106 (2011). https://doi.org/10.1016/j.jcrysgro.2011.09.048
  10. H. J. T. Ellingham, J. Soc. Chem. Ind., 63, 125 (1944). https://doi.org/10.1002/jctb.5000630501
  11. D. A. Porter, K. E. Easterling, Phase Transformation in Metal and Alloys, 3th ed, p.357, T. J. Press Ltd., Cornwall, England (1992).
  12. Y. S. Oh, M. S. Thesis, p.1-2, KAIST, Daejeon, Korea (2011).
  13. W. F. Miao and D. E. Laughlin, Scr. Mater., 40, 873 (1999). https://doi.org/10.1016/S1359-6462(99)00046-9
  14. O. Ryen, B. Holmedal, O. Nijs, E. Sjolander and H. Ekstrom, Metall. Mater. Trans. A, 37, 1999 (2006). https://doi.org/10.1007/s11661-006-0142-7
  15. P. H. Kitabjian and W. D. Nix, Acta Mater., 46, 701 (1998). https://doi.org/10.1016/S1359-6454(97)00249-8
  16. I. W. Croudace, A. Rindby and R. G. Rothwell, Geol. Soc. Spec. Publ., 267, 51 (2006). https://doi.org/10.1144/GSL.SP.2006.267.01.04