Browse > Article
http://dx.doi.org/10.5855/ENERGY.2015.24.2.034

The Characteristics of Hydrogen Production According to Electrode Materials in Alkaline Water Electrolysis  

Moon, Kwangseok (Graduate School of energy and Environment, Seoul National University of Technology & Science)
Pak, Daewon (Graduate School of energy and Environment, Seoul National University of Technology & Science)
Publication Information
Abstract
This study confirmed the characteristics of hydrogen production according to electrode materials by producing non-diaphragm alkaline water electroanalyzer that can be controlled at medium temperature to produce hydrogen. As a result of the electrochemical characteristics by electrode material ($IrO_2/Ti$, $RuO_2/Ti$, Ti), the highest efficiency was found in $RuO_2/Ti$, as a result of hydrogen production experiment by electrolyte concentration, electrolyte concentration has a tendency to be proportional to hydrogen production and the condition of 30% KOH showed the highest hydrogen production as $118.9m^3/m^3/day$. In the experiment that confirmed hydrogen production according to electrode materials, in case of combination of anode ($IrO^2/Ti$) and cathode ($RuO^2/Ti$), it was $157.55m^3/m^3/day$ that showed a higher hydrogen production by around 6.97% than that of $IrO^2/Ti$ and cathode. It is presumed that the improvement of electrochemical activation of DSA electrode increases hydrogen production and influences the improvement of durability compared to the former electrode so that it enables stable alkaline water electrolysis.
Keywords
Alkaline water electrolysis; DSA electrode; Iridium; Ruthenium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Dincer, "Renewable energy and sustainable development: a crucial review", Renewable and sustainable energy reviews, 4, 2000, 157-175.   DOI
2 산업통상자원부, "제2차 국가에너지기본계획", 2014.
3 George W. Crabtree, Mildred S. Dresselhaus, Michelle V. Buchanan, "The hydrogen economy", American Institute of Physics, 2004, 39-45.
4 J. D. Holladay, J. Hu, D. L. King, Y. Wang, "An overview of hydrogen production technologies", Catalysis today, 139, 2009, 244-260.   DOI
5 Gary J. Stiegel, Massood Ramezan, "Hydrogen from coal gasification: An economical pathway to a sustainable energy future", International Journal of Coal Geology, 65, 2006, 173-190.   DOI
6 Kai Zeng, Dongke Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Progress in Energy and Combustion Science, 36, 2010, 307-326.   DOI
7 D. M. F. Santos, C. A. C. Sequeira, D. Maccio, A. Saccone, J.L. Figueiredo, "Platinum-rare earth electrodes for hydrogen evolution in alkaline water electrolysis", Int J Hydrogen Energy, 2, 2013, 3137-3145.
8 손재익, 박대원, "수소에너지 제조기술", 도서출판 아진, 2007.
9 R. Subbaraman, D. Tripkovic, K. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts, Nature Material, 11, 2012, 550-557.   DOI
10 J.K. Norskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, "Towards the computational design of solid catalysts", Nature Chemistry, 1, 2009, 37-46.   DOI
11 J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Norskov, "Computational high-throughput screening of electrocatalytic materials for hydrogen evolution", Nature Material, 5, 2006, 909-913.   DOI
12 M. Mavrikakis, "Computational methods: a search engine for catalysts", Nature Material, 5, 2006,. 847-848.   DOI
13 J. Greeley, M. Mavrikakis, "Alloy catalysts designed from first principles", Nature Material, 3, 2004, 810-815.   DOI
14 J. Greeley, J.K. Norskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb, "Hydrogen evolution over bimetallic systems: understanding the trends", ChemPhysChem, 7 , 2006, 1032-1035.   DOI
15 J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, "Trends in the exchange current for hydrogen evolution", J Electrochem Soc, 152 , 2005, J23-J26.   DOI
16 D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R.W. Birkmire, "Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates", Angew Chem Int Ed Engl, 49, 2010, 9859-9862.   DOI
17 E. Santos, P. Quaino, W. Schmickler, "Theory of electrocatalysis: hydrogen evolution and more", Phys Chem Chem Phys, 14, 2012, 11224-11233.   DOI
18 R. Subbaraman, D. Tripkovic, D. Strmcnik, K. Chang, M. Uchimura, A.P. Paulikas, "Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces", Science, 334, 2011, 1256-1260.   DOI
19 M. Wang, L. Chen, L. Sun, "Recent progress in electrochemical hydrogen production with earthabundant metal complexes as catalysts", Energy Environ Sci, 5, 2012, 6763-6778.   DOI
20 N. Marquet, F. Gartner, S. Losse, M. Pohl, H. Junge, M. Beller, "Simple and efficient iridium (III)-catalyzed water oxidations", ChemSusChem, 4, 2011, 1598-1600.   DOI
21 N. H. Chou, P. N. Ross, A. T. Bell, T. D. Tilley, "Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation", Chem-SusChem, 4, 2011, 1566-1569.
22 W. M. Singh, T. Baine, S. Kudo, S. Tian, X. A. N. Ma, H. Zhou, "Electrocatalytic and photocatalytic hydrogen production in aqueous solution by a molecular cobalt complex", Angew Chem Int Ed Engl, 51, 2012, 5941-5944.   DOI
23 F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, S. Rapino, L. Hoober-Burkhardt, "Tailored functionalization of carbon nanotubes for electrocatalytic water splitting and sustainable energy applications", ChemSusChem, 4, 2011, 1447-1451.   DOI
24 M. Miles, "Evaluation of electrocatalysts for water electrolysis in alkaline solutions", J Electroanal Chem, 60, 1975, 89-96.   DOI
25 Wei-Xiang Chen, "Kinetics of hydrogen evolution reaction on hydrogen storage alloy electrode in alkaline solution and effects of surface modification on the electrocatalytic activity for hydrogen evolution reaction", Int. J. Hydrogen Energy, 26, 2001, 603-608.   DOI
26 S. Trasatti, "Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions", J Electroanal Chem, 39, 1972, 163-184.   DOI   ScienceOn
27 S. H. Ahn, S. J. Hwang, S. J. Yoo, I. Choi, H. Kim, J. H. Jang, "Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis", J Mater Chem, 22, 2012, 15153-15159.   DOI
28 Hu W and Lee J. Y. "Electrocatalytic properties of $Ti_2Ni/Ni-Mo$ composite electrodes for hydrogen evolution reaction", Int. J. Hydrogen Energy, 23, 1998, 253-257.
29 K. Kameyama, K. Tsukada, K. Yahikozawa, Y. Takasu, "Surface Characterization of $RuO_2-IrO_2-TiO_2$ Coated Titanium Electrodes", J. Electrochem. Soc., 141, 1993, 643-647.
30 A. J. Appleby, G. Crepy, J. Jacquelin, "High efficiency water electrolysis in alkaline solution", Int J. Hydrogen Energy, 3, 1978, 21-37.   DOI