• 제목/요약/키워드: Rotor-Stator

Search Result 1,061, Processing Time 0.147 seconds

Analysis of Core Losses in Capacitor-Run Single Phase Induction Motor Using the Finite Element Methods (유한요소법을 이용한 캐패시터 운전형 단상 유도전동기의 철손해석)

  • Min, Byoung-Wook;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.342-344
    • /
    • 1999
  • This paper presents the analysis of core losses in capacitor-run single phase induction motors using the finite element methods. The double revolving field theory can be used for the analysis to assess the quantitative and qualitative performance of the single-phase induction motor. But it is difficult to evaluate accurately the core losses. It is more difficult to segregate stator and rotor core losses at no-load and load conditions. Numerical analysis such as FEM can be used effectively for the accurate calculation of core losses and motors performances. In this paper, the coupling method of core loss characteristic equation and FEM are proposed for the accurate calculation of core losses in the stator and rotor. The FFT is also used to calculate fundamental and harmonic components in the yoke and teeth parts of motor.

  • PDF

Conceptual Design of 100 MW Turbogenerator (가스터빈 구동 공냉식 100 MW 발전기의 개념설계)

  • Park, Doh-Young;Hwang, Don-Ha;Ha, Kyung-Duck;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.88-90
    • /
    • 1998
  • The conceptual design of turbine-driven air-cooled 100 MW generator is presented. The generators rating is 100 MW 3-phase 2pole 13.8 kV 0.85 pf 60 Hz. The conceptual design is described by the process of designing the stator, rotor, and obtaining some of equivalent circuit parameters. The design process starts from the output coefficient G, and utilizes the classical design equations with parameters used in the modern designs. The slot dimensions of the stator and rotor are obtained with their respective winding dimensions.

  • PDF

A analysis of cooling system for generator according to ventilation path (유로 형상에 따른 선박용 발전기의 냉각 통풍 해석)

  • Lee, D.J.;Lim, Nam-Hyuk;Seol, S.S.;Kim, J.O.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1250-1254
    • /
    • 2004
  • To develop more compact and light generators which have high capacity, the most important thing that should be considered is the inner cooling system. Under all circumstances, the temperature of rotor and stator windings must be kept below the maximum temperature of insulation to maintain reliability and prolong durability of the machine. Therefore, the development of more effective cooling system and the exact prediction of windings are essential to produce our unique generator model which is reliable and competitive in international market. In this study, the flow of cooling air and the temperature distribution of winding is analyzed by using computational fluid dynamics. This analysis can lead to optimize the structure of cooling system and predict a local temperature rise.

  • PDF

Transient Conjugate Heat Transfer of Turbine Rotor-Stator System

  • Okita, Yoji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.831-838
    • /
    • 2004
  • A fluid-solid conjugate solver has been newly developed and applied to an actual engine disk system. Most of the currently available conjugate solvers lack the special thermal modeling for turbomachinery disk system applications. In the present new code, these special models are implemented to expand the applicability of the conjugate method and to reduce the required computational resources. Most of the conjugate analysis work so far are limited to the axisymmetric framework. However, the actual disk system includes several non-axisymmetric components which inevitably affect the local heat transfer phenomena. Also the previous work devoted to this area usually concentrate their efforts on the steady-state thermal field, although the one in the transient condition is more critical to the engine components. This paper presents full 3D conjugate analysis of a single stage high pressure turbine rotor-stator disk system to assess the three-dimensional effects (Fig. 1). The analysis is carried out not only in the steady-state but also in the engine accelerating transient condition. The predicted temperatures shows good agreement with measured data.

  • PDF

Study of the Effects of Wakes on Cascade Flow (후류가 익렬유동에 미치는 영향에 대한 실험적 연구)

  • Kim, Hyung-Joo;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.309-314
    • /
    • 1999
  • This paper is concerned with the viscous interaction between rotor and stator The viscous interaction is caused by wakes from upstream blades. The cascade was composed with five blades and cylinders were placed to make wakes and their location was about 50 percent of blade chord upstream. The location of cylinders were varied in the cascade axis with 0, 20, 40, 60 and 80 percent of pitch length. The velocity distribution in the cascade passage were measured using single slanted hot-wire and the ones in the boundary layer using boundary probe. As a result, wakes decay more rapidly at suction surface and more slowly at pressure surface. And the measurement of momentum thickness of cascade shows that the momentum thickness is larger near the blade surface. From measurement of blade boundary layer, turbulent intensity is also larger near the blade surface because wakes collide the boundary layer And wakes make boundary layer thickness smaller and delay flow separation.

  • PDF

High Speed Motor/Generator of an Electro-Mechanecal Battery for Power Averaging of Alternative energy system (대체에너지 시스템의 출력 평준화를 위한 EMB용 초고속 전동발전기)

  • Jang, S.M.;Yoon, I.K.;Ryu, D.W.;Choi, S.K.;Yoon, K.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.337-339
    • /
    • 2001
  • High speed brushless permanent magnet (PM) machines are a key technology for electric drives and motion control systems for many application, since they are conductive to high efficiency, high power density small size and low weight. Proposed slotless PM machine is constructed without stator winding slots. Its stator magnetic material is in the form of a ring and winding have a toroidal configuration and its rotor consists of a 4-pole Halbach array or radially magnetized PM rotor.

  • PDF

Harmonic Compensation by A Flywheel System Based on Stator Flux-Oriented Vector Control of WRIM(Wound Rotor Induction Machine) (권선형 유도전동기의 고정자 자속기준 벡터제어에 의한 전원선의 고조파 보상)

  • Kim Yoon-Ho;Cho Yong-Hyun;Park Kyung-Soo;Jeong Yeon-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.256-259
    • /
    • 2001
  • An increase of pulsed power demand and load variation produce bad effect to power system. This causes power factor decrease. This paper proposes the excitation of the secondary side of wound rotor induction machine as one of harmonic compensation systems. In this paper, a harmonic compensation scheme based on stator flux-oriented vector control is proposed. By using the flux-oriented vector control, a voltage source PWM(Pulse Width Modulation) control scheme can be applied with fast dynamic response time. The designed control scheme is verified through simulation.

  • PDF

An Improved Control Strategy Using a PI-Resonant Controller for an Unbalanced Stand-Alone Doubly-Fed Induction Generator

  • Phan, Van-Tung;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.194-202
    • /
    • 2010
  • The main cause of degradation in an unbalanced stand-alone doubly-fed induction generator (DFIG) system is negative sequence components that exist in the generated stator voltages. To eliminate these components, a hybrid current controller composed of a proportional-integral controller and a resonant regulator is developed in this paper. The proposed controller is applied to the rotor-side converter of a DFIG system for the purpose of compensating the negative stator voltage sequences. The proposed current controller is implemented in a single positive rotating reference frame and therefore the controller can directly regulate both the positive and negative sequence components without the need for sequential decomposition of the measured rotor currents. In terms of compensation capability and accuracy, simulations and experimental results demonstrated the excellent performance of the proposed control method when compared to conventional vector control schemes.

Design and Drive Characteristics of Low Voltage 8/6 SRM for Fan Application (팬구동용 저압 8/6 SRM의 설계 및 구동 특성)

  • Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1371-1376
    • /
    • 2014
  • In this paper, 4-phase switched reluctance motor(SRM) with 8-stator and 6-rotor pole structure is proposed for a high speed fan with a low voltage. The air blower has unidirectional rotation characteristics and requires a low torque ripple and noise as well as high efficiency. To achieve the requirements, voltage and current according to loading condition of limited specification is considered. Design process is to select the bore diameter, pole arc, york of stator and rotor to get a high torque and efficiency. To verify the validity of the proposed structure, finite element method(FEM) is employed to get the performances. And the converter for the proposed SRM is employed a 1.5q power converter for cost effectiveness. Prototype SRM is manufactured and tested, and the test results show this design is within the specification and good for the air blower applications.

Rotor & Stator Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 및 고정자 설계)

  • Choi, Yun-Chul;Kim, Hong-Seok;Lee, Min-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.860-861
    • /
    • 2007
  • This paper deals with optimum design criteria to minimize torque ripple of concentrated winding Synchronous Reluctance Motor (SynRM) using Response Surface Methodology (RSM). The feasibility of using RSM with the finite element method(FEM) in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM (6slot).

  • PDF