• 제목/요약/키워드: Rotor Vibration

검색결과 948건 처리시간 0.024초

원형 슬롯 레스트릭터를 갖는 외부 가압 공기 저널 베어링의 소음 및 진동 특성 예측 (Prediction of Noise and Vibration Characteristics of Externally Pressurized Air Journal Bearings with a Circular Slot Restrictor)

  • 노병후;박정구;김경웅
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1028-1033
    • /
    • 2003
  • The purpose of this paper is to investigate the noise and vibration characteristics of externally pressurized air journal bearings with a circular slot restrictor. To do this, the nonlinear transient analysis including rotor imbalance was performed for a rotor-bearing system. The effects of radial clearance and the length of the bearing and mass eccentricity of the rotor on the noise and vibration characteristics of the bearing are also examined. The results show that the noise and vibration of the rotor-bearing system first increase up to critical speed of the system, and then decrease up to instability threshold speed of the system as the rotational speed of the rotor increases, and the noise of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the length of the bearing.

베어링 지지 효과를 고려한 3 차원 로터동역학 해석 (Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects)

  • 박효근;김동현;김명국;전승배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

후퇴각 날개끝이 있는 헬리콥터 로터깃의 회전주파수 해석 (Rotating Frequency Analysis of a Helicopter Rotor Blade with Swpt Tips)

  • 황호연;;정건교
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.229-239
    • /
    • 2000
  • To reduce the drag rise on the advancing helicopter rotor blade tips, the tip of the blade is modified to have sweep, anhedral and pretwist. The equations of motion of rotor blade with these tip angles were derived using Hamilton principle, programmed using FORTRAN and named as ARMDAS(Advanced Rotorcraft Multidisplinary Design and Analysis System). Rotating frequency analysis of rotor blades with swept tipe was performed that is necessary in conceptual and preliminary design phases of the helicopter design. Vibration analysis of non-rotating blades was also accomplished and compared with MSC/NASTRAN resutls for the basis of comparison with the vibration test data. The rotating frequency analysis of blades with an actual rotor blade data was also performed to verify coded program and to check the possibility of a resonance of an actual rotor blade at the specific rotating speed.

  • PDF

기전연성계 해석을 이용한 단상유도전동기의 회전자 결함진단에 관한 연구 (Fault Diagnosis of Rotor Bars in a Single Phase Induction Motor Monitoring Electromechanical Parameters)

  • 박상진;장정환;장건희;이용복;김창호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.802-808
    • /
    • 2000
  • This paper characterizes the electromechanical parameters due to the fault of rotor bars in a squirrel cage induction motor. Simulation is performed to investigate how broken rotor bars have effect on them by solving the time-stepping finite element equation coupled with magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bar introduces the beating phenomenon in time domain and the sideband frequencies in frequency spectra, respectively, to the stator current, torque, speed, magnetic force and vibration of a rotor. However, vibration of a rotor would be the most effective monitoring parameters to detect the faults of rotor bars.

  • PDF

AFB으로 지지된 탄성회전체의 위험속도 통과시험 (A test on passing through bending critical speed of Flexible Rotor supported by AFB)

  • 이영섭;염병용;김진형;김명섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.354-359
    • /
    • 2001
  • A flexible rotor was smoothly passed through its bending critical speed, which is supported by AFB. Then, maximum magnitude of the rotor vibration at the middle point was 25${\mu}$m. The test rig was largely consisted of air turbine, multi-leaf type air foil bearing and flexible rotor and its bending critical speed was 32,600 rpm. And the balancing system and method for field balancing of the flexible rotor were developd successfully.

  • PDF

진동신호 특성 예측 및 분류를 통한 회전체 고장진단 방법 (Rotating machinery fault diagnosis method on prediction and classification of vibration signal)

  • 김동환;손석만;김연환;배용채
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.90-93
    • /
    • 2014
  • In this paper, we have developed a new fault detection method based on vibration signal for rotor machinery. Generally, many methods related to detection of rotor fault exist and more advanced methods are continuously developing past several years. However, there are some problems with existing methods. Oftentimes, the accuracy of fault detection is affected by vibration signal change due to change of operating environment since the diagnostic model for rotor machinery is built by the data obtained from the system. To settle a this problems, we build a rotor diagnostic model by using feature residual based on vibration signal. To prove the algorithm's performance, a comparison between proposed method and the most used method on the rotor machinery was conducted. The experimental results demonstrate that the new approach can enhance and keeps the accuracy of fault detection exactly although the algorithm was applied to various systems.

  • PDF

BLDC 전동기의 동적 편심 및 전자기적 불평형력을 고려한 편심 회전자의 과도 동적 해석 (Transient Dynamic Analysis of a Dynamci Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors)

  • 김태종;황상문;박노길
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.401-409
    • /
    • 2000
  • Vibration of a BLDC motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the motor air-gap. When a relative misalignment of rotor in the air-gap center exists on the assemblage it is considered to influence the motor system characteristics, depending on the degree of misalignment. The rotor-motor system used in a washing machine is modeled using FE-TM and a magnetic force of BLDC motor with radial rotor eccentricity is analyzed. And the transient whirl responses of a rotor system with relative misalignment in the motor air-gap are investigated considering mechanical origins and magnetic effects. Results show that rotor misalignment in the air-gap affect the vibration of the rotor-motor system.

  • PDF

BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석 (Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors)

  • 김태종;황상문;박노길
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권11호
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF

발전용 가스터빈 Rotor 정지조건별 최적 Turning 운전시간 고찰: 501기종 현장실험 중심으로 (A Study on Optimal Turning Operation Time for Rotor Stop Condition in Gas Turbine: Based on Field Test of W501 Machines)

  • 유원주;이창열
    • 대한안전경영과학회지
    • /
    • 제25권3호
    • /
    • pp.1-7
    • /
    • 2023
  • As the capacity of renewable power generation facilities rapidly increases, the variability of electric power system and gas turbine power generation is also increasing. Therefore, problems may occur that require urgent repair while the gas turbine rotor is stopped. When the gas turbine rotor turning is stopped and then restarted, if the turning period is not appropriate, severe vibration may occur due to rotor bending. As a result of the experiment, it was confirmed that normal operation is possible when the gap data measured at the start of rotor turning after maintenance work is similar to the existing value. And the vibration value at the start of rotor turning was lower as the rotor temperature was lower or the stop period was shorter.