• Title/Summary/Keyword: Rotor Systems

Search Result 695, Processing Time 0.029 seconds

Dynamic Modeling and Analysis of General Rotor Systems with Open Cracks (열린 균열이 있는 일반 회전체계의 동적 모델링 및 해석)

  • 홍성욱;최성환;이종원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.290-299
    • /
    • 2003
  • This paper presents an efficient modeling and dynamic analysis method for open cracked rotor bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method Is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis for rotor systems.

A Generalized Modal Analysis for Multi-Stepped, Distributed-Parameter Rotor-Bearing Systems (다단 연속 회전체 베어링 계의 일반화된 모드 해석)

  • 박종혁;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.525-534
    • /
    • 1999
  • The present paper proposes a generalized modal analysis procedure for non-uniform, distributed-parameter rotor-bearing systems. An exact element matrix is derived for a Timoshenko shaft model which contains rotary inertia, shear deformation, gyroscopic effect and internal damping. Complex coordinates system is adopted for the convenience in formulation. A generalized orthogonality condition is provided to make the modal decomposition possible. The generalized modal analysis by using a modal decomposition delivers exact and closed form solutions both for frequency and time responses. Two numerical examples are presented for illustrating the proposed method. The numerical study proves that the proposed method is very efficient and useful for the analysis of distributed-parameter rotor-bearing systems.

  • PDF

An Efficient Dynamic Model of General Rotor Systems with Open Cracks (열린 균열이 있는 일반 회전체계의 효율적인 동적 모델)

  • 최성환;홍성욱;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.88-93
    • /
    • 2003
  • This paper presents an efficient dynamic modeling method for open cracked rotor-bearing systems. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of cracks. The proposed modeling method is validated through a series of simulations and experiments. First, the proposed method is rigorously compared with a commercial finite element code. Then, an experiment is performed to validate the proposed modeling method. Finally, a numerical example is introduced to demonstrate the possible application of the proposed method in the crack diagnosis fur rotor systems.

  • PDF

An efficient method for computation of unbalance responses of rotor-bearing systems (회전체 베어링계의 불균형 응답을 위한 효율적인 계산 방법)

  • Hong, Seong-Wook;Park, Jong-Heuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.137-147
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in rotor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an efficient method for unbalance responses is proposed so as to easily take into account bearing parameters in computation. An exact matrix condensation procedure is proposed which enables the present method to compute unbalance responses by dealing with condensed, small matrices. The proposed method causes no errors even though the computation procedure is based on the small matrices condensed from the full matrices. The present method is illustrated through a numerical example and compared with the conventional method.

  • PDF

Attitude Control of a Quad-rotor using CMG (CMG를 이용한 쿼드-로터의 자세제어)

  • Oh, Kyung-Hyun;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.695-700
    • /
    • 2014
  • In this paper, we utilize the CMG's momentum bias to control the roll/pitch attitude of the Quad-rotor. While the previous control approaches have used the thrust control approach, we design and add a new momentum controller (using CMG) in order to improve the transient response over the existing methods. The focal point of this paper is the design of a controller for a Quad-rotor's attitude using CMG. This leads to other tasks such as an identification of the model's parameters and mathematical nonlinear modeling. Then, the previous thrust controller is designed based on the linearized model. Finally, the overall system with our designed controller is implemented and tested in real time to show that the Quad-rotor is kept in a good balanced position faster than the traditional thrust-only control approach.

Rotor position detection of bifilar-wound hybrid stepping motors by phase current measurement (상전류 측정에 의한 복권형 하이브리드 스테핑 전동기의 회전자 위치 검출)

  • Kim, Kyu-Hui;You, Jeong-Bong;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.619-625
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by modeling the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. We show that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF

Study on the Electromagnetic Excitation System for the Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor (초고속 회전체용 공기 포일 베어링의 동특성 계수 측정을 위한 전자석 가진장치에 관한 연구)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.18-25
    • /
    • 2013
  • Recently the requirement of long-term mobile energy source for mobile robot or small-sized unmanned vehicle is highly increased, and the micro turbine generator(MTG) which is known to have high energy and power density is under development. MTG is designed to have air foil bearing and high speed rotor of which operating speed is 400,000rpm. In the development stage of high speed rotor and bearing, stability analysis for the full operational speed range is essential and the dynamic coefficients such as stiffness and damping coefficients of bearing depending on the rotational speed are required for that. Although perturbation method is usually used to identify the dynamic coefficients, it's not easy to give the perturbation to the high speed rotating rotor. In this study, we present the dynamic coefficients measurement system for air foil bearing which consists of electromagnets, gap sensors, high speed motor and controller. This measurement system can exert the sine sweep force to the rotor-bearing, measure the displacement of rotor and get FRF(Frequency response function) of rotor-bearing. The least square estimation method is applied to identify the dynamic coefficients of bearing from the measured frequency response at the different rpm and the identified dynamic coefficients for the wide rotational speed range are presented.

Synthesis of Nonlinear Model Matching Flight Control System for Tilt Rotor Aircraft

  • Asada, Yasuhiro;Osa, Yasuhiro;Uchikado, Shigeru;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.979-984
    • /
    • 2005
  • In this study, we suggest a tilt rotor aircraft and attempt to apply a nonlinear model matching control method for its maneuver. The proposed method is very simple and useful to construct the control law for the complicated nonlinear system such as aircraft motion.

  • PDF

Improved Rotor Speed Estimation in DFIG Wind Turbine Systems Based on Cascaded SOGI (종속형 SOGI 기반 DFIG 풍력터빈의 개선된 회전자 속도 추정)

  • Nguyen, Anh Tan;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.393-394
    • /
    • 2020
  • In this paper, an improved rotor speed estimation in DFIG wind turbine systems based on a cascaded SOGI is proposed. Due to excellent harmonics and DC offset rejection capability of the cascaded SOGI, the accurate rotor speed estimation can be achieved despite the harmonics and sensing offset in DFIG currents. The simulation results have verified the validity of proposed method.

  • PDF

Outdoor Localization for a Quad-rotor using Extended Kalman Filter and Path Planning (확장 칼만 필터와 경로계획을 이용한 쿼드로터 실외 위치 추정)

  • Kim, Ki-Jung;Lee, Dong-Ju;Kim, Yoon-Ki;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1175-1180
    • /
    • 2014
  • This paper proposes a new technique that produces improved local information using a low-cost GPS/INS system combined with Extended Kalman Filter and Path Planning when a Quad-rotor flies. In the research, a low-cost GPS is combined with INS by Extended Kalman Filter to improve local information. However, this system has disadvantages in that estimation accuracy is getting worsens when the Quad-rotor flies through the air in a curve and precision of location information is influenced by performance of the used GPS. An algorithm based on Path Planning is adopted to deal with these weaknesses. When the Quad-rotor flies outdoors, a short moving path can be predicted because all short moving paths of quad-rotor can be assumed to be straight. Path planning is used to make the short moving path and determine the closest local information of data of the GPS/INS system to location determined by path planning. Through the foregoing process, improved local data is obtained when the quad-rotor flies, and the performance of the proposed system is verified from various outdoor experiments.