• Title/Summary/Keyword: Rotatory

Search Result 204, Processing Time 0.029 seconds

Effects of geometric parameters on in-plane vibrations of two-stepped circular beams

  • Tufekci, Ekrem;Yigit, Oznur Ozdemirci
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.131-152
    • /
    • 2012
  • In-plane free vibrations of circular beams with stepped cross-sections are investigated by using the exact analytical solution. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The stepped arch is divided into a number of arches with constant cross-sections. The exact solution of the governing equations is obtained by the initial value method. Several examples of arches with different step ratios, different locations of the steps, boundary conditions, opening angles and slenderness ratios for the first few modes are presented to illustrate the validity and accuracy of the method. The effects of the geometric parameters on the natural frequencies are investigated in details. Several examples in the literature are solved and the results are given in tables. The agreement of the results is good for all examples considered. The mode transition phenomenon is also observed for the stepped arches. Some examples are solved also numerically by using the commercial finite element program ANSYS.

Stability analysis of pump using finite element method (유한요소법에 의한 펌프축계의 안정성해석)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

Mode Shape of Timoshenko Beam Having Different Circular Cross-Sections (다단 티모센코 원형단면봉의 연속 고유모우드)

  • 전오성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.118-123
    • /
    • 1997
  • The study suggests a method to analyze the vibration of the multi-stepped beam having the different circular cross-sections. The rotatory inertia, the shear deformation and the torque applied at both ends of the beam are considered in the governing equation. The complex displacement and the variable separation are introduced to derive the solution of the equation of each uniform beam element having constant cross-section. Then boundary conditions are applied to solve the total system. This method uses the mathematically exact solutions unlike numerical method such as the finite element method in solving the problem having the simultaneous differential equations of Timoshenko beam theory. the natural frequencies and the corresponding mode shapes are precise, especially the mode shapes are continuous.

  • PDF

Precision Speed Control of PMSM for Stimulation of the Vestibular System Using Rotatory Chair (전정기관 자극용 회전자극기를 위한 PMSM의 정밀 속도제어)

  • 이태호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.628-631
    • /
    • 2000
  • A new control method for precision robust speed control of a PMSM(Permanent Magnet Synchronous Motor) using load torque observer is presented. With this system we can obtain more reliable eye moving singal(nystagmus) Until now rotating chair system which is called 2D-optokinetic stimulator is used to make dizzincess. However an inclined rotating chair system witch is 3D-optokinetic stimulator is needed to obtain the precise dizziness data. This 3D-optokinetic sitimulator include unbalanced load aused by unbalanced center of mass. For this case new compensation method is considered to obtain robust speed control using load torque observer. To reduce the effect of this disturbance we can use dead-beat observer which has high gain. The application of the load torque observer is published in [1] for position control. A problem of using speed information such as amplifying effect of noise is reduce by moving average process. The experimental results are depicted in this paper to show the effect of this proposed algorithm.

  • PDF

Free Vibrations of Horizontally Curved Beams with Multiple Elastic Springs (여러 개의 스프링으로 탄성 지지된 수평 곡선보의 자유진동)

  • 이병구;진태기;최규문;이태은
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.5
    • /
    • pp.101-107
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams with mu1tiple elastic springs. Taking into account the effects of rotatory Inertia and shear deformation. differential equations governing the free vibrations of such beams are derived, In which each e1astic spring is modeled as a discrete Winkler foundation with very short longitudinal length. Differential equations are solved numerically to calculate natural frequencies and mode shapes. In numerical examples, the circular, Parabolic. sinusoidal and elliptic curved beams are considered. The parametric studies are conducted and the lowest four frequency parameters are reported In tables and figures as the non-dimensional forms. Also the typical mode shapes are presented.

  • PDF

Free Vibrations of Tapered Cantilever-Type Beams with Tip Mass at the Free End (자유단에 집중질량을 갖는 캔틸레버형 변단면 보의 자유진동)

  • Oh, Sang-Jin;Lee, Jae-Young;Park, Kwang-Kyou;Mo, Jeong-Man
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.965-970
    • /
    • 2002
  • The purpose of this paper is to investigate the free vibration characteristics of tapered beams with general boundary condition(translational and rotational elastic support) at one end and carrying a tip mass with translational elastic support at the other end. The beam model is based on the classical Bernoulli-Euler beam theory which neglects the effects of rotatory inertia and shear deformation. The governing differential equation for the free vibrations of linearly tapered beams is solved numerically using the corresponding boundary conditions. Numerical results are compared with existing solutions by other methods for cases in which they are available. The lowest four natural frequencies are calculated over a wide range of section ratio, dimensionless spring constant and mass ratio.

  • PDF

On the Free Vibration of Immersed Linearly Tapered Beam with a Tip Mass (첨단 질량을 갖는 선형 원뿔대의 자유진동)

  • Shin, Young-Jae;Sung, Kyung-Yun;Yun, Jong-Hak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1054-1059
    • /
    • 2002
  • A linearly tapered beam immersed partially in other material is considered and is modelled as a linearly tapered Bernoulli-Euler beam fixed at the bottom with a concentrated mass at the top. Its governing equations is derived and its free vibration analysis is performed for various boundary conditions. And the rotatory inertia of the eccentric lumped tip mass is considered. The problem of determining the natural frequencies leads to an eighth order determinant. The solutions of the frequency equations are obtained numerically. The non-dimensional frequency parameters are given in tabular form and the influence of non-dimensional parameters on natural frequency is discussed for various conditions.

  • PDF

Free Vibrations of Horizontally Curved Beams with Shear Deformation (전단변형(剪斷變形)을 고려한 수평(水平) 곡선(曲線)보의 자유진동(自由振動))

  • Lee, Byoung-Koo;Shin, Seong-Cheol;Choi, Kou-Moon;Lee, Jong-Kook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.977-981
    • /
    • 2002
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effect of shear deformation as well as the effects of vertical, rotatory and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported, with and without the effect of shear deformation, as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio, the slenderness ratio and the stiffness parameter.

  • PDF

Vibration Analysis of Rotor Systems Using Finite Dynamic Elements (동적 유한요소에 의한 회전축 계의 진동 해석)

  • 양보석;황형섭
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.467-475
    • /
    • 1997
  • A rotor-bearing system has been investigated, including internal damping and axial torque using finite dynamic elements. A procedure is presented for dynamic modeling of rotor-bearing system which consist of finite dynamic shaft elements, rigid disk, and bearing and seal. A finite dynamic element model including the effects of rotatory inertia, gyroscopic moments, axial force, and axial torque is developed using the frequency dependent shape function. The natural whirl speeds, stability, and unbalance response of rotor system are calculated on several cases and compared with the conventional finite elements.

  • PDF

Free Vibrations of Circular Strip Foundations with Variable Breadth (변화폭 원호형 띠기초의 자유진동)

  • Lee, Byong-Koo;Huh, Young;Lee, Jong-Kook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper deals with the free vibration analysis of circular strip foundations with the variable breadth. Taking into account effects of both rotatory inertia and shear deformation, differential equations governing free vibrations of such foundations are derived. The Winkler foundation is chosen as the model of soil foundation. The breadth of strip foundation is assumed to be a linear function. The differential equations are solved numerically to calculate natural frequencies. In numerical examples, the strip foundations with the hinged-hinged, hinged-clamped. clamped-hinged and clamped-clamped end constraints are considered. The parametric studies are conducted and the lowest four frequency parameters are reported in figures as the non-dimensional forms.