Browse > Article
http://dx.doi.org/10.12989/sem.2012.42.2.131

Effects of geometric parameters on in-plane vibrations of two-stepped circular beams  

Tufekci, Ekrem (Faculty of Mechanical Engineering, Istanbul Technical University)
Yigit, Oznur Ozdemirci (Faculty of Mechanical Engineering, Istanbul Technical University)
Publication Information
Structural Engineering and Mechanics / v.42, no.2, 2012 , pp. 131-152 More about this Journal
Abstract
In-plane free vibrations of circular beams with stepped cross-sections are investigated by using the exact analytical solution. The axial extension, transverse shear deformation and rotatory inertia effects are taken into account. The stepped arch is divided into a number of arches with constant cross-sections. The exact solution of the governing equations is obtained by the initial value method. Several examples of arches with different step ratios, different locations of the steps, boundary conditions, opening angles and slenderness ratios for the first few modes are presented to illustrate the validity and accuracy of the method. The effects of the geometric parameters on the natural frequencies are investigated in details. Several examples in the literature are solved and the results are given in tables. The agreement of the results is good for all examples considered. The mode transition phenomenon is also observed for the stepped arches. Some examples are solved also numerically by using the commercial finite element program ANSYS.
Keywords
curved beam; stepped arch; free vibration; in-plane; exact solution; mode transition;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Rossi, R.E. and Laura, P.A.A. (1995), "Numerical experiments on dynamic stiffening of a circular arch executing in-plane vibrations", J. Sound Vib., 187, 897-909.   DOI   ScienceOn
2 Tarnopolskaya, T., De Hoog, F.R., Fletcher, N.H. and Thwaites, S. (1996), "Asymptotic analysis of the free inplane vibrations of beams with arbitrarily varying curvature and cross-section", J. Sound Vib., 196, 659-680.   DOI   ScienceOn
3 Tarnopolskaya, T., De Hoog, F.R. and Fletcher, N.H. (1999), "Low-frequency mode transition in the free in-plane vibration of curved beams", J. Sound Vib., 228, 69-90.   DOI   ScienceOn
4 Tong, X., Mrad, N. and Tabarrok, B. (1998), "In-plane vibration of circular arches with variable cross-sections", J. Sound Vib., 212, 121-140.   DOI   ScienceOn
5 Tufekci, E. and Arpaci, A. (1998), "Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia effects", J. Sound Vib., 209, 845-856.   DOI   ScienceOn
6 Tufekci, E. (2001), "Exact solution of free in-plane vibration of shallow circular arches", Int. J. Struct. Stab. D., 1, 409-428.   DOI
7 Tufekci, E. and Ozdemirci, O. (2006), "Exact solution of free in-plane vibration of a stepped circular arch", J. Sound Vib., 295, 725-738.   DOI
8 Tunay, I., Yoon, S.Y., Woerner, K. and Viswanathan, R. (2009), "Vibration analysis and control of magnet positioner using curved beam models", IEEE T. Contr. Syst. T., 17(6), 1415-1423.   DOI
9 Verniere De Irassar, P.L. and Laura, P.A.A. (1987), "A note on the analysis of the first symmetric mode of vibration of circular arches of non-uniform cross-section", J. Sound Vib., 116, 580-584.   DOI   ScienceOn
10 Viola, E., Dilena, M. and Tornabene, F. (2007), Analytical and numerical results for vibration analysis of multistepped and multi-damaged circular arches", J. Sound Vib., 299(1-2), 143-163.   DOI   ScienceOn
11 Xia, W. and Wang, L. (2010), "Vibration characteristics of fluid-conveying carbon nanotubes with curved longitudinal shape", Comp. Mater. Sci., 49, 99-103.   DOI   ScienceOn
12 Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R. and Cui, W. (2010), "Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation", J. Microelectromech. S., 19(3), 647-656.   DOI
13 Zhou, Y., Dong, Y. and Li, S. (2010), "Analysis of a curved beam MEMS piezoelectric vibration energy harvester", Adv. Mat. Res., 139-141, 1578-1581.   DOI
14 Dong, G.H., Hao, S.H., Zhao, Y.P., Zong, Z. and Gui, F.K. (2010a), "Numerical analysis of the flotation ring of a gravity-type fish cage", J. Offshore Mech. Arct., 132(3), 031304.   DOI   ScienceOn
15 Auciello, N.M. and De Rosa, M.A. (1994), "Free vibrations of circular arches: A review", J. Sound Vib., 176(4), 433-458.   DOI   ScienceOn
16 Balasubramanian, T.S. and Prathap, G. (1989), "A field consistent higher-order curved beam element for static and dynamic analysis of stepped arches", Comput. Struct., 33, 281-288.   DOI   ScienceOn
17 Chidamparam, P. and Leissa, A.W. (1993), "Vibrations of a planar curved beams, rings and arches", Appl. Mech. Rev., 46, 467-483.   DOI
18 Dong, G.H., Hao, S.H., Zhao, Y.P., Zong, Z. and Gui, F.K. (2010b), "Elastic responses of a flotation ring in water waves", J. Fluid Struct., 26(1), 176-192.   DOI   ScienceOn
19 Gutierrez, R.H., Laura, P.A.A., Rossi, R.E., Berteo, R. and Villaggi, A. (1989), "In-plane vibrations of noncircular arches of non-uniform cross-section", J. Sound Vib., 129, 181-200.   DOI   ScienceOn
20 Hu, Y.J., Yang, Y.J. and Kitipornchai, S. (2010), "Pull-in analysis of electrostatically actuated curved microbeams with large deformation", Smart Mater Struct, 19, 065030.   DOI   ScienceOn
21 Jang, K.S., Kang, T.W., Lee, K.S., Kim, C. and Kim, T.W. (2010), "The effect of change in width on stress distribution along the curved segments of stents", J. Mech. Sci. Technol., 24(6), 1265-1271.   DOI
22 Karami, G. and Malekzadeh, P. (2004), "In-plane free vibration analysis of circular arches with varying crosssections using differential quadrature method", J. Sound Vib., 274, 777-799.   DOI
23 Lin, H.Y. (2008), "On the natural frequencies and mode shapes of a multi-span and multi-step beam carrying a number of concentrated elements", Struct. Eng. Mech., 29(5), 531-550.   DOI
24 Karami, M.A., Yardimoglu, B. and Inman, D.J. (2010), "Coupled out of plane vibrations of spiral beams for micro-scale applications", J. Sound Vib., 329(26), 5584-5599.   DOI   ScienceOn
25 Laura, P.A.A. and Maurizi, M.J. (1987), "Recent research on vibrations of arch-type structures", Shock Vib Dig, 19, 6-9.
26 Laura, P.A.A., Verniere De Irassar, P.L., Carnicer, R. and Berteo, R. (1988), "A note on vibrations of a circumferential arch with thickness varying in a discontinuous fashion", J. Sound Vib., 120, 95-105.   DOI   ScienceOn
27 Lin, H.Y. (2010), "An exact solution for free vibrations of a non-uniform beam carrying multiple elasticsupported rigid bars", Struct. Eng. Mech., 34(4), 399-416.   DOI
28 Liu, G.R. and Wu, T.Y. (2001), "In-plane vibration analyses of circular arches by the generalized differential quadrature rule", Int. J. Mech. Sci., 43, 2597-2611.   DOI   ScienceOn
29 Lu, P., Zhao, R. and Zhang, J. (2010), "Experimental and finite element studies of special-shape arch bridge for self-balance", Struct. Eng. Mech., 35(1), 37-52.   DOI
30 Markus, S. and Nanasi, T. (1981), "Vibration of curved beams", Shock Vib. Dig., 13, 3-14.
31 Ouakad, H.M. and Younis, M.I. (2011), "Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation", J. Sound Vib., 330(13), 3182-3195.   DOI   ScienceOn
32 Ren, W.X., Su, C.C. and Yan, W.J. (2010), "Dynamic modeling and analysis of arch bridges using beam-arch segment assembly", CMES-Comp. Model Eng., 70(1), 67-92.
33 Rossi, R.E., Laura, P.A.A. and Verniere De Irassar, P.L. (1989), "In-plane vibrations of cantilevered non-circular arcs of non-uniform cross-section with a tip mass", J. Sound Vib., 129, 201-213.   DOI   ScienceOn