• Title/Summary/Keyword: Rotational speed

Search Result 1,128, Processing Time 0.033 seconds

Three-dimensional Imaging with an Endoscopic Optical Coherence Tomography System for Detection of Airway Stenosis (기도협착 측정을 위한 내시경 광 결맞음 단층촬영법을 이용한 3차원 이미징)

  • Kwon, Daa young;Oak, Chulho;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.243-248
    • /
    • 2019
  • The respiratory tract is an essential part of the respiratory system involved in the process of respiration. However, if stenosis occurs, it interferes with breathing and can even lead to death. Asthma is a typical example of a reversible cause of airway narrowing, and the number of patients suffering from acute exacerbation is steadily increasing. Therefore, it is important to detect airway narrowing early and prevent the patient's condition from worsening. Optical coherence tomography (OCT), which has high resolution, is suitable for observing the microstructure of tissues. In this study we developed an endoscopic OCT system. We combined a 1300-nm OCT system with a servo motor, which can rotate at a high speed. A catheter was pulled back using a linear stage while imaging with 360° rotation by the motor. The motor was selected considering various requirements, such as torque, rotational speed, and gear ratio of pulleys. An ex vivo rabbit tracheal model was used as a sample, and the sample and catheter were immobilized by acrylic structures. The OCT images provided information about the structures of the mucosa and submucosa. The difference between normal and stenosed parts in the trachea was confirmed by OCT. Furthermore, through a three-dimensional (3-D) reconstruction process, it was possible to identify and diagnose the stenosis in the 3-D image of the airway, as well as the cross-sectional image. This study would be useful not only for diagnosing airway stenosis, but also for realizing 3-D imaging.

A STUDY OF WORKING EFFICIENCY AND FILE DEFORMATION OF GT ROTARY FILE IN CURVED CANALS (GT rotary file을 이용한 만곡 근관형성시 작업 효율 및 file 변형 발생에 관한 연구)

  • 신주희;백승호;배광식;임성삼;윤수한;김병현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.418-435
    • /
    • 2001
  • Root canal preparation process is of utmost importance in successful treatment of root canal. Also, one of the most important purpose of the root canal preparation is to enlarge the root canal three dimensionally without changing the curvature of the root canal However as the curvature of the root canal increases, there are many difficulties involved in formation of optimum root canal. Therefore in order to solve the above mentioned problems, new developments in methods of root canal preparation and equipments for such purposes were made. Recently, vigorous studies about newly introduced engine-driven nickel-ti-tanium rotary file are conducted. As shown in research results to dates, it is well established that the use of nickel-titanium file is better suited for curved root canal than stainless steel file in maintaining the curvature or root canal and reducing the deformation of root canal. However it is also acknowledged that there are a few discrepancies in research results according to protocol, due to failure to remove variables in experiments. In addition, although it is recommended by the manufacturer that the GT rotary file should maintain a low rotational speed of 150~350rpm and 'light pressure' as light as not to break the lead of a pencil, academic studies about the vertical force which is not yet standardized are not sufficiently explored. Therefore, this research devised and utilized a special research equipment to standardize the appropriate range of vertical force for GT rotary file through experiments by breaking of the lead of a pencil as expressed by the manufacturer and to accurately measure factors involved through repeating and recreating the environment of root canal preparation. Forming nine experimental groups by varying the vertical forces (150g. 220g, 300g) and rpm (150rpm, 250rpm, 350rpm), the effects of changing vertical forces and rpm on working efficiency were measured in terms of time expended in root canal preparation by crown-down method using a transparent resin block with 35 degree curvature and GT rotary file (z-test). The following research using this special research equipment that involved nine experimental groups and varying the vertical force for root canal preparation from 300g which is within the normal vertical force range to 700g and 1000g which fall outside the normal rpm range. The results were as follows : 1. Analysis of the experiment results revealed that the time spent in root canal preparation decreased as the vertical forces and rpm increased (p<0.05). Also, the effects of rpm were greater than those of the vertical forces within the normal vertical force range ($\beta$-weight test). 2. Observation of the deformation of GT rotary file revealed that deformation increases in a direct correlation with the vertical force increase and in a reverse correlation with the rpm decrease. In the case of the vertical forces close to the normal range, the probability of GT rotary file deformation were quite different depending on the rpm changes. In the case of greater vertical forces, the occurrences of deformation of the file were more frequent regardless of the rpm changes. 3. Deformation and breakage of file were also commonly observed in the expended time measurement experiments and GT rotary file deformation experiments in which low speed rpm (150rpm) was used and at the curved portion of the resin block.

  • PDF

Experimental Performance Analysis using a Compact Scale Model for Shroud Tidal Current Power Generation System (쉬라우드 조류발전장치의 축소모형실험을 통한 발전 성능 분석)

  • Han, Seok Jong;Lee, Uk Jae;Park, Da In;Lee, Sang Ho;Jeong, Shin Tark;Lee, Sang Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.4
    • /
    • pp.221-228
    • /
    • 2019
  • Experimental investigation was performed to analyze the flow field characteristics and power generation performance for a shroud tidal power generation system. Electrical power output was compared with the rotational speed of the turbine blade and electric load connected to the generator for various flow velocity. As the electrical load decreased, the speed of the turbine increased rapidly and reached by about 2 times. The power output also increased remarkably with the decrease of load, and then decreased after maximum power point. In addition, the maximum power point appeared at high electrical loads as the experimental flow velocity increased. These results of the flow field characteristics and power generation performance analysis of the shroud tidal power generation system variation with the flow velocity conditions and electrical load are expected to be the basic data necessary for the development of efficient shroud tidal power generation system.

Variable Switching Duty Control of Switched Reluctance Motor using Low-Cost Analog Drive (저가형 아날로그 구동장치를 이용한 Switched Reluctance Motor의 스위칭 Duty 가변제어)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.123-128
    • /
    • 2021
  • For accurate speed and current control in industrial applications, SRM (Switched Reluctance Motor) is very important to synchronize the stator phase excitation and rotor position in the drive due to its nature. In general, position sensors such as encoder and resolver are used to generate rotational force by exciting the stator winding according to the rotor position and to control the motor by using speed and position information. However, for these sensors, 1) the cost of the sensors is quite large in terms of price, so the proportion of the motor system to the total system cost is high. 2) In terms of mechanical, position sensors such as encoders and resolvers are attached to the stator to increase the size and weight. In conclusion, in order to drive the SRM, control based on the rotor position information should be basically performed, and it is important to design the SRM driving system according to the environment in consideration of the application field. Therefore, in this paper, we intend to study the driving and control characteristics of SRM through variable switching duty control by designing a low-cost analog driving device, deviating from the general control system using the conventional encoder and resolver.

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

The Evaluation of RPM Change in X-Smart According to Power Source: Endodontic Wireless Electronic Motor (근관치료용 무선전기모터인 X-Smart의 전원의 종류에 따른 RPM 변화의 평가)

  • Park, Se-Hee;Jeong, Dong-Bin;Cho, Kyung-Mo;Kim, Jin-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.1
    • /
    • pp.91-97
    • /
    • 2011
  • The purpose of this study was to evaluate RPM maintenance in X-Smart according to the power supplied by the AC adapter and rechargeable battery. Five new X-Smart were used in this study. A handpiece with rubber disk which has reflective tape was mounted on the vice. To measure the RPM, a non-contact type digital tachometer was used. RPM measurements were recorded every 5 minutes to 180 minutes and repeated 3 times per motor from each power source. To evaluate a difference of the RPM changes, two-way repeated measures were performed using $SPSS^{TM}$ 14.0. All tests were conducted at the 95 percent confidence level. There was no significant difference in the RPM change between the power sources. Continuous use of X-Smart with a rechargeable battery for up to 180 minutes could be safely used as an endodontic wireless motor with a reliable RPM maintenance.

Effect of the Cone Index on the Work Load of the Agricultural Tractor (원추 지수가 트랙터 작업 부하에 미치는 영향)

  • Kim, Wan Soo;Kim, Yong Joo;Baek, Seung Min;Baek, Seung Yun;Moon, Seok Pyo;Lee, Nam Gyu;Kim, Taek Jin;Siddique, Md Abu Ayub;Jeon, Hyeon Ho;Kim, Yeon Soo
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.9-18
    • /
    • 2020
  • The purpose of this study was to analyze the effect of the soil cone index (CI) on the tractor work load. A load measurement system was constructed for measuring the field data. The field sites were divided into grids (3×3 m), and the cone index was measured at the center of each grid. The work load measured through the plow tillage was matched with the soil cone index. The matched data were grouped at 600 kPa intervals based on the cone index. The work load according to the cone index was analyzed for engine, axle, and traction load, respectively. The results showed that when the cone index increased, engine torque decreased by up to 9%, and the engine rotational speed and brake-specific fuel consumption increased by up to 5% and 3%, respectively. As the cone index increased, the traction and tillage depth were inversely proportional to the cone index, decreasing 7% and 18%, respectively and the traction and tillage depth were directly proportional to the cone index, increasing 13% and 12%, respectively. Thus, it was found that the cone index had a major influence on the engine, axle, and traction loads of the tractor.

Effect of the Inner Pressure on a Hybrid Composite Flywheel Retor (하이브리드 복합재 플라이휠 로터에 작용하는 내압의 효과)

  • Oh Je-Hoon;Han Sang-Chul;Kim Myung-Hoon;Ha Sung Kyu
    • Composites Research
    • /
    • v.18 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • The delamination in the filament-wound composite flywheel rotor often lowers the performance of the flywheel energy storage system. A conventional ring type hub usually causes tensile stresses on the inner surface of the composite rotor, resulting in lowering the maximum rotational speed of the rotor. In this work, the stress and strain distributions within a hybrid composite rotor were derived from the two-dimensional governing equation with the specified boundary conditions, and an optimum pressure at the inner surface of the rotor was proposed to minimize the strength ratio and maximize the storage energy. A split type hub was introduced to apply the calculated optimum pressure at the inner surface, and a spin test was performed up to 40,000 rpm to demonstrate the performance of the split type hub with radial and circumferential strains measured using a wireless telemetry system. From the analysis and the test, it was found that the split type hub successfully generates a compressive pressure on the inner surface of the rotor, which can enhance the performance of the composite rotor by lowering the strength ratio within the rotor.

Tribology of Si3N4 Ceramics Depending on Amount of Added SiO2 Nanocolloid (SiO2 나노 콜로이드 첨가량에 따른 질화규소의 트라이볼러지)

  • Nam, Ki-Woo;Chung, Young-Kyu;Hwang, Seok-Hwan;Kim, Jong-Soon;Moon, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.267-272
    • /
    • 2011
  • We analyzed the wear characterization of $Si_3N_4$ ceramics according to the amount of added $SiO_2$ nanocolloid. The test specimen was prepared by hot-press sintering at 35 MPa and 2123 K in an $N_2$ gas atmosphere for 1 h. A wear test was performed with a block-on-ring tester, and the test conditions were as follows: (1) the ring with a diameter of 35 mm had a rotational speed of 50 rpm; (2) the load was 9.8 N; and (3) the temperature was $25^{\circ}C$. The test results show that $Si_3N_4$ ceramics have a friction coefficient of about 1.0 and a wear loss of about 0.02 mm. Of the specimens used this study, the test specimen with 1.3 wt% of added $SiO_2$ nanocolloid has the best wear resistance because it has the lowest friction coefficient and the smallest wear loss. This specimen also has the highest Vickers hardness and bending strength. In this study, the friction coefficient is inversely proportional to the hardness and bending strength.

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.