• Title/Summary/Keyword: Rotational Viscosity

Search Result 108, Processing Time 0.027 seconds

A Study on Physical Dechlorination of Mixed Plastics using Screw Reactor (스크류반응기를 이용한 흔합플라스틱의 물리적 탈염소에 관한 연구)

  • Kim Sang-Guk;Eom Yujin;Chung Soo-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.20-27
    • /
    • 2006
  • PVC is the thermoplastic offering excellent material properties. PVC has been used in wide variety of applications, however, it causes environmental problems when it is discarded because of its high chlorine content. Since dechlorination reaction of PVC is taking place at relatively low temperature compared to the pyrolysis temperature of plastics, study on the dechlorination reaction has been carried out as a pre-treatment process. Twin screw reactor which shows excellent mixing capabilities is employed. Experimental variables are the first and second reactor temperature, PVC content in mixed plastics, viscosity of mixed plastics, feeding rate, rotational speed or the second reactor. Over $90\%$ of dechlorination ratio can be obtained under proper operation conditions. Chlorine gas evolved from reactor is absorbed in water and can be recovered as a hydrochloric acid. Analysis had been done on chlorine flows by taking material balance over realtor.

Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing (씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

A Study on Physical Dechlorination of Mixed Plastics using Screw Reactor (스크류반응기를 이용한 혼합플라스틱의 물리적 탈염소에 관한 연구)

  • Kim, Sang-Guk;Eom, Yu-Jin;Chung, Soo-Hyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.83-96
    • /
    • 2005
  • PVC is the thermoplastic offering excellent material properties. PVC is used in wide variety of applications, however, it causes environmental problems when it is discarded because of its high chlorine content. Since dechlorination reaction of PVC is taking place relatively low temperature compared to the pyrolysis temperature of plastics, study on the dechlorination reaction has been carried out as a pre-treatment process. Twin screw reactor which shows excellent mixing capabilities is employed. Experimental variables are first and second reactor temperature, PVC content in mixed plastics, viscosity of mixed plastics, feeding rate, rotational speed of the second reactor. Over 90% of dechlorination rate can be obtained under proper operation conditions. Chlorine gas evolved from reactor is absorbed in water and can be recovered as a hydrochloric acid. Analysis had been done on chlorine flows by taking material balance over reactor.

  • PDF

Thixotropic Properties of Gelatinized Rice Starch Solutions (쌀 전분 호화액의 틱소트로픽 성질)

  • Kim, Ju-Bong;Kim, Young-Suk;Lee, Shin-Young;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.451-456
    • /
    • 1984
  • Rheological properties of gelatinized rice starch solutions were investigated with Brookfield rotational viscometer. The 8% starch solution showed thixotropic behavior with yield stress. The alkali gelatinized starch was more thixotropic than the thermal gelatinized one. The time dependent characteristics of starch solutions followed Tiu's model. The value of rate constant $(a_1)$ in Tiu's model increased linearly with shear rate, and was exponentially dependent on concentration and temperature. Temperature dependency of rate constant and apparent viscosity followed Arrhenius type equation and the activation energy were about 14.3 and 6.8 Kcal/g mole, respectively. The $a_1-value$ was found to be useful to evaluate changes in structaral decay on the shearing time of gelatinized rice starch solutions.

  • PDF

Development and Performance Evaluation of Liquid-type Chemical Additive for Warm-Mix Asphalt (중온화 액상형 화학첨가제 개발과 이를 적용한 중온 아스팔트의 성능 평가)

  • Baek, Cheolmin;Yang, Sunglin;Hwang, Sungdo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.107-116
    • /
    • 2013
  • PURPOSES: The liquid-type chemical warm-mix asphalt (WMA) additive has been developed. This study evaluates the basic properties of the additive and the mechanical properties of WMA asphalt and mixture manufactured by using the newly developed chemical additive. METHODS: First, the newly developed WMA additive was applied to the original asphalt by various composition of additive components and dosage ratio of additive. These WMA asphalt binders were evaluated in terms of penetration, softening point, rotational viscosity, and PG grade. Based on the binder test results, one best candidate was chosen to apply to the mixture and then the mechanical properties of WMA mixture were evaluated for moisture susceptibility, dynamic modulus, and rutting and fatigue resistance. RESULTS : According to the binder test, WMA asphalt binders showed the similar properties to the original asphalt binder except the penetraion index of WMA additive was a little higher than original binder. From the Superpave mix design, the optimum asphalt content and volumetric properties of WMA mixture were almost the same with those of hot mix asphalt (HMA) mixture even though the production and compaction temperatures were $30^{\circ}C$ lower for the WMA mixture. From the first set of performance evaluation, it was found that the WMA mixture would have some problem in moisture susceptibility. The additive was modified to improve the resistance to moisture and the second set of performance evaluation showed that the WMA mixture with modified chemical additive would have the similar performance to HMA mixture. CONCLUSIONS : Based on the various laboratory tests, it was concluded that the newly developed chemical WMA additve could be successfully used to produce the WMA mixture with the comparable performance to the HMA mixture. These laboratory evaluations should be confirmed by applying this additive to the field and monitoring the long-term performance of the pavement, which are scheduled in the near future.

Nonlinear Dynamic Behaviors of Offshore Guyed Towers (해양구조물 Guyed Tower의 비선형 동적거동)

  • Park, Woo-Sun;Pyen, Chong-Kun;Park, Young-Suk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.126-136
    • /
    • 1991
  • This study is concerned with the nonlinear dynamic behaviors of guyed towers for wave loadings. In order to analyze the nonlinear responses of guyed towers efficiently, the main tower is modeled as an equivalent stick, the guyline system is idealized as a spring with nonlinear stiffness in the horizontal direction. and the pile foundation system is represented as a linear spring in the rotational direction. The wave forces on the main tower are evaluated by using Morison's equation. In order to consider adequately the nonlinearities of the guying system and drag forces due to fluid viscosity. the analyses are performed in the time domain. The mode superposition method is adopted for solving the nonlinear equation of motion efficiently. which is based on the Newmark integration scheme. Numerical analyses are carried out to investigate the sensitivity of two major design parameters for guyed towers. i.e., the clump weight conditions and the base renditions of the tower.

  • PDF

Rheological Properties Investigation of Kerosene gels with Nano-Aluminum Particles (알루미늄 나노입자 첨가량에 따른 케로신 젤의 유변학적 특성 변화)

  • Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Kang, Teagon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.469-473
    • /
    • 2017
  • In this study, the rheological characteristics of kerosene based gel propellants were investigated. For the gelling agent, Thixatrol$^{(R)}$ has been used with 100 nm nano-sized aluminium particle addition. Three gellant contents of 2.5 wt%, 5 wt% and 7.5 wt% kerosene gels were first investigated where aluminium particles contents of 10 wt% and 20 wt% were added to 7.5 wt% gellant case. The viscosities of each sample measured by rotational rheometer show that the viscosity augments as gellant or aluminium content increases while the 20 wt% aluminum content resulted in failure of measurement due to the agglomerations of aluminum particles.

  • PDF

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

Improving High-resolution Impedance Manometry Using Novel Viscous and Super-viscous Substrates in the Supine and Upright Positions: A Pilot Study

  • Wong, Uni;Person, Erik B;Castell, Donald O;von Rosenvinge, Erik;Raufman, Jean-Pierre;Xie, Guofeng
    • Journal of Neurogastroenterology and Motility
    • /
    • v.24 no.4
    • /
    • pp.570-576
    • /
    • 2018
  • Background/Aims Swallows with viscous or solid boluses in different body positions alter esophageal manometry patterns. Limitations of previous studies include lack of standardized viscous substrates and the need for chewing prior to swallowing solid boluses. We hypothesize that high-resolution impedance manometry (HRiM) using standardized viscous and super-viscous swallows in supine and upright positions improves sensitivity for detecting esophageal motility abnormalities when compared with traditional saline swallows. To establish normative values for these novel substrates, we recruited healthy volunteers and performed HRiM. Methods Standardized viscous and super-viscous substrates were prepared using "Thick-It" food thickener and a rotational viscometer. All swallows were administered in 5-mL increments in both supine and upright positions. HRiM metrics and impedance (bolus transit) were calculated. We used a paired two-tailed t test to compare all metrics by position and substrate. Results The 5-g, 7-g, and 10-g substrates measured 5000, 36 200, and 64 $700mPa{\cdot}sec$, respectively. In 18 volunteers, we observed that the integrated relaxation pressure was lower when upright than when supine for all substrates (P < 0.01). The 10-g substrate significantly increased integrated relaxation pressure when compared to saline in the supine position (P < 0.01). Substrates and positions also affected distal contractile integral, distal latency, and impedance values. Conclusions We examined HRiM values using novel standardized viscous and super-viscous substrates in healthy subjects for both supine and upright positions. We found that viscosity and position affected HRiM Chicago metrics and have potential to increase the sensitivity of esophageal manometry.