• 제목/요약/키워드: Rotational Speed

Search Result 1,122, Processing Time 0.041 seconds

Surface Wheel Pattern Analysis and Grinding Process Parameters of Silicon (반도체 실리콘재료의 정밀연삭을 위한 공정변수와 연삭후 표면에 형성된 wheel pattern과의 관계)

  • Oh, Han-Seog;Park, Sung-Eun;Lee, Hong-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • For the fine grinding process development of semiconductor monocrystalline silicon, wheel rotational speed, chuck rotational speed, feed rate and hysteresis force were controlled. Magic mirror system was used for grinding wheel pattern analysis. Curvature of wheel pattern was measured by fitting equation. The modeling of surface wheel pattern was related to wheel and chuck rotational speed. The calculated curvature of the model was well matched with the measured curvature. The statistical analysis indicated wheel and chuck rotational speed were significantly effective on.

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

The characteristics of capacity control using a variable speed compressor in an industrial cooler (산업용 냉각기의 압축기 회전수 변화에 따른 용량제어 특성)

  • Baek, S.M.;Moon, C.G.;Yoon, J.I.;Jeong, S.K.;Kim, E.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2011
  • This paper presents the capacity-control characteristics in an industrial cooler with a variable speed compressor. The inverter-type compressor is controlled by the rotational speed of the operational frequency. This type of the compressor performs the wide range of load compared to the on-off type. When the load of the system reduces, the rotational speed will be reduced. Thus, the system leads to the less power consumption and extends the longer durability of the compressor. With the variable rotational speed of the compressor the cooling capacity of the cooler is about 1.6-3.6 kW and the capacity control is about 40-100%. The system showed the highest efficiency when the rotational speed is about 45-70 Hz. The results can be used as the basic design data to control an industrial cooler.

Condition Monitoring of Rotating Machine with a Change in Speed Using Hidden Markov Model (은닉 마르코프 모델을 이용한 속도 변화가 있는 회전 기계의 상태 진단 기법)

  • Jang, M.;Lee, J.M.;Hwang, Y.;Cho, Y.J.;Song, J.B.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.413-421
    • /
    • 2012
  • In industry, various rotating machinery such as pumps, gas turbines, compressors, electric motors, generators are being used as an important facility. Due to the industrial development, they make high performance(high-speed, high-pressure). As a result, we need more intelligent and reliable machine condition diagnosis techniques. Diagnosis technique using hidden Markov-model is proposed for an accurate and predictable condition diagnosis of various rotating machines and also has overcame the speed limitation of time/frequency method by using compensation of the rotational speed of rotor. In addition, existing artificial intelligence method needs defect state data for fault detection. hidden Markov model can overcome this limitation by using normal state data alone to detect fault of rotational machinery. Vibration analysis of step-up gearbox for wind turbine was applied to the study to ensure the robustness of diagnostic performance about compensation of the rotational speed. To assure the performance of normal state alone method, hidden Markov model was applied to experimental torque measuring gearbox in this study.

Influence of the Welding Speeds and Changing the Tool Pin Profiles on the Friction Stir Welded AA5083-O Joints

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.44-51
    • /
    • 2017
  • In the present study, AA 5083-O plates are joined by friction stir welding technique. A universal milling machine was used to perform the welding process of the work-pieces which were fixed on the proper position by a vice. The joints were friction stir welded by two tools with different pin profiles; cylindrical threaded pin and tapered smooth one at different rotational speed values; 400 rpm and 630 rpm, and different welding speed values; 100 mm/min and 160 mm/min. During FSW of each joint, the temperature was measured by infra-red thermal image camera. The welded joints were inspected by visually as well as by the macro- and microstructure evolutions. Furthermore, the joints were tested for measuring the hardness and the tensile strength to study the effect of changing the FSW parameters on the mechanical properties. The results show that increasing the rotational speed results in increasing the peak temperature, while increasing the welding speed results in decreasing the peak temperature for the same tool pin profile. Defect free welds were obtained at lower rotational speed by the threaded tool profile. Moreover, the threaded tool pin profile gives superior mechanical properties at lower rotational speed.

An Experimental Study on the Tappet Spin for a Direct Acting Valve Train System (직접 구동형 밸브 트레인 시스템의 태핏 회전에 관한 실험적 연구)

  • Cho, Myung-Rae;Kim, Hyung-Jun;Moon, Tae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1179-1184
    • /
    • 2003
  • The technique for measuring the rotational speed of tappet in direct acting type valve train system has been developed. The optic signal monitoring system with laser and optic fiber was designed to follow the signal of tappet rotation. The system was based on ON/OFF signal generation from the additional encoder teeth under the tappet with optic fibers attached photo transistor. The data showed that tappet rotation was affected by offset, oil temperature and cam shaft operating speed. Also it was found that tappet rotation increases with oil temperature. Tappet spin was delayed 10∼s20$^{\circ}$ cam angle after valve opening. The instantaneous rotational speed of tappet was reciprocal to cam shaft speed and the tappet and the cam angle ratio was located in the range of 0.1∼0.3.

A Study on the Thermohydrodynamic characteristics of Journal Bearing (저어널 베어링의 열류체역학적 특성에 대한 연구)

  • 김용섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.59-70
    • /
    • 1991
  • Rupture of lubricant film, thermal characteristics, and variation of viscosity are very important factors to evaluate the performance of journal bearing. Variation of external conditions, load or rotational speed, largely influence these facters. For example, if rotational speed increases lubricant bulk temperature increases and viscosity drops. In this paper the effect of rotational speed variation on the characteristics of lubricant film in a journal bearing is investigated by experiment and theoretical analysis. It has been measured number of lubricant film rupture and lubricant bulk temperature form journal bearing which have been established at the various operating speed of shaft. The range of speed variation is from 900rpm to 2100rpm. Theoretical analysis has been carried out for rupture of lubricant film and thermal characteristics, and these results are compared with experimental results.

  • PDF

A Study on the Thermal Behaviro of Machine Tool Spindle System (공작기계 주축계 열적거동에 관한 연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • According to the development of tool material and the improvement of machinability of cutting material like aluminium alloy, the higher spindle speed is needed. However, the higher speed causes the heat generation of bearings, the deformation of spindle unit parts, and the rotational accuracy of spindle to be worse. Therefore, it is essential to analyze and control the heat generation and the thermal behavior of spindle unit in order to have higher speed and better rotational accuracy. This paper shows the analogy between the analyzation of heat generation and thermal behavior of high speed spindle system by finite element method and the test results of actual temperature rise through running test, and shows the necessity of cooling the spindle and inner ring side of bearings for the thermal balance of high speed spindle system.

  • PDF

Characteristics of Friction Torques and Lubrication in High Speed Angular Contact Ball Bearings (고속 앵귤러 콘택트 볼베어링의 마찰 토크 및 윤활 특성)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.47-52
    • /
    • 1997
  • Friction torques, electrical contact resistances and bearing temperatures were measured on high speed angular contact ball beatings for the spindle of machine tools. The test bearings ran with oil-air lubrication at the thrust loads from 320 N to 1920 N and at the rotational speed of up to 12000 rpm. Electrical contact resistances between balls and races were measured to evaluate the formation of the lubricant film in the contact area. The test results with sufficient lubrication showed that the variations of friction torques were sensitive to the thrust loads and the rotational speeds, and that the friction torques were higher than those with insufficient lubrication. With insufficient lubrication and high thrust loads, the collapse of the lubricant film was detected even at a high rotational speed. It was concluded that these high speed beatings to run in condition of fluid lubrication should require monitoring not only the temperature increase of the bearing but also the lubricant film formation in contact areas resulting from the change in the applied load and the lubricant amount.