• 제목/요약/키워드: Rotation-linear Motion

검색결과 90건 처리시간 0.03초

회전축 정렬불량을 가지는 유연 회전디스크의 고유치 해석 (Natural Frequencies of a Spinning Disk Misaligned with the Axis of Rotation)

  • 허진욱;정진태;김원석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.817-825
    • /
    • 2001
  • The natural frequencies of a flexible spinning disk misaligned with the axis of rotation are studied in an analytic manner. The effects of misalignment on the natural frequency need to be investigated, because the misalignment between the axis of symmetry and the axis of rotation cannot be avoided in the removable disks such as CD-R, CD-RW or DVD disks. Assuming that the in-plane displacements are in steady state and the out-of-plane displacement is in dynamic state, the equations of motion are derived for the misaligned spinning disk. After the exact solutions are obtained for the steady-state in-plane displacements, they are plugged into the equation for the dynamic-state out-of-plane motion. The resultant equation is a linear equation for the out-of-plane displacement, which is discretized by the Galerkin method. Based on the discretized equations, the effects of the misalignment are analyzed on the vibration characteristics of the spinning disk, i.e., the natural frequencies and the critical speed

  • PDF

기계 진동의 수동적 제어를 위한 동흡진기 설계인자 해석 (Design Parameter Analysis of a Dynamic Absorber for the Control of Machine Body Vibration)

  • 김기만;최성대
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.1-8
    • /
    • 2019
  • The optimal design parameters of a dynamic absorber (DA) in a machine body (that is considered as a rigid body) are discussed in this paper. The bounce and rotation motions of the rigid body have been controlled passively by a DA, which consists of a mass and a spring. The rigid body is subjected to a harmonically excited force and supported by linear springs at both ends. To define the motion of a rigid body with a DA, the equation of motion was expressed in the third-order matrix form. To define the optimal design conditions of a DA, the reduction of dynamic characteristics, represented by the amplitudes of bounce and rotation, and the transmitted powers, were evaluated and discussed. The level of reduction was found to be highly dependent on the location and spring stiffness of the DA.

XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가 (Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system)

  • 김동민;이동연;권대갑
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

기초가진 로터-베어링 시스템의 상태공간 과도응답해석 (A State-Space Transient Response Analysis of Rotor-Bearing System with Base Excitation)

  • 이안성;김병옥;김영철;김영춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.669-674
    • /
    • 2004
  • In this study, the analytical method to evaluate the response of rotor-bearing system subjected to base excitation was presented. The equations of motion contain speed dependent gyroscopic terms, base rotation dependent parametric terms and several forcing function terms which depend on linear accelerations, rotational accelerations and a combination of linear and rotational combination. The study of rotor-bearing system excited by its base motion is not only able to predict the rotational performance, but provides the fundamental data for vibration isolation. In order to illustrate transient response, transient response analysis of a practical application sample were performed. The transient response was carried out for the given base excitation by using the state-space Newmark method that incorporates the average velocity concept.

  • PDF

고하중 차량의 다목적 테스트를 위한 다축 가진 테이블의 기구학 해석 (Kinematic Analysis of Multi Axis Shaking Table for Multi-Purpose Test of Heavy Transport Vehicle)

  • 진재현;나홍철;전승배
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.823-829
    • /
    • 2012
  • An excitation table is commonly used for vibration and ride tests for parts or assemblies of automobiles, aircrafts, or other heavy systems. The authors have analyzed several kinematic properties of an excitation table that is under development for heavy transport vehicles. It consists of one table and 7 linear hydraulic actuators. The authors have performed mobility analysis, inverse kinematics, forward kinematics, and singularity analysis. Especially, we have proposed a fast forward kinematic solution considering the limited motion of the excitation table. On the assumption that the motion variables such as rotation angles and displacements are small, the forward kinematic problem is converted to the observer problem of a linear system. This provides a fast solution. Also we have verified that there are no singularity points in the working range by numerical analysis.

기울어진 선형편파 수신을 위한 차량용 도파관 슬롯 배열 안테나 (The Slotted Array In-motion Antenna for Receiving a Tilted Linear Polarization using a single layer film)

  • 손광섭;박찬구
    • 대한전자공학회논문지TC
    • /
    • 제46권9호
    • /
    • pp.52-59
    • /
    • 2009
  • 본 논문에서는 차량용 위성 안테나에 적합한 평판형 도파관 안테나를 설계 제작 하였다. 제안된 안테나는 마이크로 스트립 패치 배열 안테나의 유전체 손실 및 급전 라인의 손실을 대체하고자 조립하기에 간단한 3층 구조의 급전 도파관을 이용하여 고이득의 안테나를 구현하였다. 또한 위성에서 송신한 선형 편파 신호가 전리층을 지나면서 'Faraday rotation' 현상으로 인해 송신 안테나와 수신 안테나사이에 스큐가 발생하고 이는 편파 손실을 야기시켜 신호의 세기가 감쇄되는데, 이를 제거하기 위해서 아령 모양의 선형 편파기를 제안하였다. 본 논문에서 제안된 $4{\times}16$ 배열 안테나를 제작한 결과 29.4dB의 이득을 얻었다.

태권도 옆차기 동작의 인체관절과 분절사이의 협응 과정 (The Process of the Interjoint and Intersegmental Coordination of Side Kick Motion in Taekwondo)

  • 윤창진;채원식
    • 한국운동역학회지
    • /
    • 제18권4호
    • /
    • pp.179-189
    • /
    • 2008
  • 본 연구는 9명의 남자 중학교 초보피험자들을 대상으로 태권도 옆차기 동작의 숙련정도에 따른 운동학적 협응과정을 살펴보는 데 목적을 두었다. 이용된 변인은 최대합성직선속도, 분절간 각속도, 각도 대 각도 도면이었다. 분석결과, 연습후기로 갈수록 인접한 분절간의 운동량 전이가 잘 이루어져 각 분절의 최대합성직선속도가 유의하게 증가하였으며 분절간 각속도에서 학습후기로 갈수록 몸통에서 대퇴, 하퇴분절로의 순차적인 전이를 보였으며 던지는 듯하면서 미는 듯한 동작형태를 보였다. 엉덩관절과 무릎관절의 각도-각도 도면에서는 학습초기에는 다이나믹스한 변화를 보였으나 학습이 됨에 따라 숙련된 피험자처럼 안정적인 협응 패턴을 보여주었다.

정상인에서 수동적인 뻗은다리올림 시 생체되먹임 장치의 압력과 허리골반 움직임의 상관관계 (The Correlation of the Pressure of Biofeedback Unit and Lumbopelvic Motion During Straight Leg Raising in Healthy Subjects)

  • 정도영
    • 한국전문물리치료학회지
    • /
    • 제25권3호
    • /
    • pp.12-18
    • /
    • 2018
  • Background: Passive straight leg raising (PSLR) is the common clinical test to measure of hamstring muscle length. Hip flexion angle contributes to change the lumbopelvic rotation during PSLR. Pressure biofeedback unit (PBU) is commonly used to detect lumbopelvic movement during lower limb movements. Thus, there may be the relationship between pressure of PBU and lumbopelvic motion during PSLR. Objects: The objective of this study was to determine the relationship between pressure of PBU and lumbopelvic motion during PSLR. Methods: Thirty two subjects participated in this study. A three-dimensional motion analysis system were used to measure the lumbopelvic angle during PSLR, while recording the pressure of PBU according to angle of PSLR by 10 degree increments. Pearson product moment correlations and linear regression analysis were used to describe the relationship between variables. Results: The results showed that there was a significant relationship between the lumbopelvic and angle of PSLR (Pearson's r=.83, p<.05), between the pressure of PBU and angle of PSLR (Pearson's r=.75, p<.05), and between lumbopelvic motion and pressure of PUB (Pearson's r=.83, p<.05). Linear regression equation using lumbopevic angle as an independent factor was as follows: Pressure of PBU = 47.35 + (2.55 ${\times}$ angle of lumbopelvic motion) ($R^2=.69$, p<.05). Conclusion: Results of the present study indicate that pressure of PBU can be used to indirectly detect the amounts of lumbobevic motion during muscle length test or stretching of hamstring.

미세입자 분사가공용 시퀸스 제어가 가능한 2축 스테이지 개발에 관한 연구 (A Study on the Development of a 2-axis Stage with Sequence Control for Micro Particle Blast Machining)

  • 황철웅;이세한;왕덕현
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.81-87
    • /
    • 2020
  • A stable rotational-to-linear motion transformation structure using a driving mechanism with 2 degrees of freedom was developed for an orthogonal mechanism to prevent the interference of each axis in 2D motion. In this mechanism, a step motor was used for precise position control. This structure was developed to maneuver workparts in micro particle blast machining experiments. To determine the real-time performance of micro particle blast machining, the control, input, and output were operated simultaneously and precise position control was implemented, using a timer interrupt with multiple execution codes. The two step motors obtained precise position control by removing backlash with a ball-screw mechanism. The device has menu-type control codes for user-friendliness, and real-time sequence control was simultaneously adopted for user control input.

Blur-Invariant Feature Descriptor Using Multidirectional Integral Projection

  • Lee, Man Hee;Park, In Kyu
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.502-509
    • /
    • 2016
  • Feature detection and description are key ingredients of common image processing and computer vision applications. Most existing algorithms focus on robust feature matching under challenging conditions, such as inplane rotations and scale changes. Consequently, they usually fail when the scene is blurred by camera shake or an object's motion. To solve this problem, we propose a new feature description algorithm that is robust to image blur and significantly improves the feature matching performance. The proposed algorithm builds a feature descriptor by considering the integral projection along four angular directions ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, and $135^{\circ}$) and by combining four projection vectors into a single highdimensional vector. Intensive experiment shows that the proposed descriptor outperforms existing descriptors for different types of blur caused by linear motion, nonlinear motion, and defocus. Furthermore, the proposed descriptor is robust to intensity changes and image rotation.