• Title/Summary/Keyword: Rotation Speed Compensation

Search Result 21, Processing Time 0.034 seconds

A High-speed/Low-power OFDM Frequency Offset Synchronization Compensation Block Design (OFDM 주파수 옵셋 동기화부 보상 블록의 저전력 설계)

  • Han, Jae-Woong;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.201-202
    • /
    • 2008
  • In this paper, an efficient frequency offset compensation design for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. The conventional CORDIC(COordinate Rotation Digital Computer) algorithm for frequency offset compensation utilizes CORDIC hardware and complex multiplier. But, proposed structure utilizes only one CORDIC hardware.

  • PDF

A Compensation Method for Time Dealy of Full Digital Synchronous Frame Current Regulator of PWM ac Drives (디지털 동기좌표계 전류제어기에서의 시지연을 고려한 PWM 기법)

  • Bae, Bon-Ho;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.244-246
    • /
    • 2001
  • In a full digital implementation of a current regulator, the voltage output is inevitably delayed due to arithmetic calculation and PWM. In case of the synchronous frame current regulator, the time delay is accompanied by the rotation of frame. In some applications in which the ratio of sampling frequency to output frequency is not high enough, such as high power drive or super high-speed drive, it is known that the effect of rotation of frame during the delay time causes phase and magnitude error in the voltage output. The error degrades the dynamic performance and can bring about the instability of current regulator at high speed. It is also intuitively known that advancing the phase of voltage output can mitigate the instability. In this paper, the instability problems are studied analytically and a compensation method for the error has been proposed. By means of computer simulation and complex root locus analysis, comparative study with conventional methods is carried out and the effectiveness of proposed method is verified.

  • PDF

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

Hybrid Sensor-less Control of Permanent Magnet Synchronous Motor in Low-speed Region

  • Yamamoto, Yasuhiro;Funato, Hirohito;Ogasawara, Satoshi
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.301-308
    • /
    • 2008
  • This paper proposes a method of improving the stability in sensor-less control of permanent magnet synchronous motors. The control method for low-speed region is divided into two: One is a high frequency method, which involves a problem of reverse rotation once misdetection of the permanent magnet polarity should occur, and another one is a current drive method, which has a problem that phase and speed oscillations are caused by quick speed changes. Hence, authors propose adoption of the current drive method for the basic control system with added compensation of stabilization by means of the high frequency method. This combination secures stable control with no risk of reversal and less vibration. In addition, authors have also considered a frequency separation filter of a shorter delay time so that current control performance will not lower even when high frequencies are introduced. This filter has achieved simplified compensation using repetitive characteristic through the utilization of the periodicity of high frequency current. Simulation and experiment have been conducted to verify that the stable performance of this system is improved.

Study on Speed Ripple Reduction Algorithm in Sensorless Controlled IPMSM (IPMSM 센서리스 제어에서의 속도리플저감 알고리즘에 관한 연구)

  • Lee, Song-Cheol;Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.249-253
    • /
    • 2016
  • In this study, a harmonic-pulsation-compensator (HPC) is presented to reduce a periodic speed ripple in IPMSM. A proportional-integral compensator in HPC is proposed instead of the existing integral compensator to reduce the speed ripple more rapidly. A formula to calculate a rotation angle is also proposed, making compensation optimal in sensored and sensorless controls. The validity of the proposed algorithm is verified by experiments.

Slip Detection and Control Algorithm to Improve Path Tracking Performance of Four-Wheel Independently Actuated Farming Platform (4륜 독립구동형 농업용 플랫폼의 주행 궤적 추종 성능 향상을 위한 휠 슬립 검출 및 보상제어 알고리즘 연구)

  • Kim, Bongsang;Cho, Sungwoo;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In a four-wheel independent drive platform, four wheels and motors are connected directly, and the rotation of the motors generates the power of the platform. It uses a skid steering system that steers based on the difference in rotational power between wheel motors. The platform can control the speed of each wheel individually and has excellent mobility on dirt roads. However, the difficulty of the straight-running is caused due to torque distribution variation in each wheel's motor, and the direction of rotation of the wheel, and moving direction of the platform, and the difference of the platform's target direction. This paper describes an algorithm to detect the slip generated on each wheel when a four-wheel independent drive platform is traveling in a harsh environment. When the slip is detected, a compensation control algorithm is activated to compensate the torque of the motor mounted on the platform to improve the trajectory tracking performance of the platform. The four-wheel independent drive platform developed for this study verified the algorithm. The wheel slip detection and the compensation control algorithm of the platform are expected to improve the stability of trajectory tracking.

Chucking Compliance Compensation by Using Linear Motor (리니어 모터를 이용한 척킹 컴플라이언스 보상)

  • Lee, Seon-Gyu;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper introduces a compensating system for machining error, which is resulted from chucking with separated jaws. In machining the chucked cylindrical workpiece, the deterioration of machining accuracy, such as out-of-roundness is inevitable due to the variation of the radial compliance of the chuck workpiece system which is caused by the position of jaws with respect to the direction of the applied force. To compensate the chucking compliance induced error, firstly roundness profile of workpiece due to chucking compliance after machining needs to be predicted. Then using this predicted profile, the compensated tool feed trajectory can be generated. And by synchronizing the cutting tool feed system with workpiece rotation, the chucking compliance induced error can be compensated. To satisfy the condition that the cutting tool feed system must provide high speed and high position accuracy, brushless linear DC motor is used. In this study, firstly through the force-deflection experiment in workpiece chucked lathe, the variation of radial compliance of chuck workpiece system is obtained. Secondly using the mathematical equation and cutting experiment result, the predicted profile of workpiece and its compensation tool trajectory are generated. Thirdly the configuration of compensation system using linear motor is introduced, and to improve the system performance, PID controller is designed. Finally the tracking performance of system is examined by experiment. Through the real cutting experiment, roundness is significantly improved.

Online Load Torque Ripple Compensator for Single Rolling Piston Compressor (싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

A Facial Feature Detection using Light Compensation and Appearance-based Features (빛 보상과 외형 기반의 특징을 이용한 얼굴 특징 검출)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.143-153
    • /
    • 2006
  • Facial feature detection is a basic technology in applications such as human computer interface, face recognition, face tracking and image database management. The speed of feature detection algorithm is one of the main issues for facial feature detection in real-time environment. Primary factors like a variation by lighting effect, location, rotation and complex background give an effect to decrease a detection ratio. A facial feature detection algorithm is proposed to improve the detection ratio and the detection speed. The proposed algorithm detects skin regions over the entire image improved by CLAHE, an algorithm for light compensation against varying lighting conditions. To extract facial feature points on detected skin regions, it uses appearance-based geometrical characteristics of a face. Since the method shows fast detection speed as well as efficient face-detection ratio, it can be applied in real-time application to face tracking and face recognition.

  • PDF