• Title/Summary/Keyword: Root Mean Square

Search Result 2,087, Processing Time 0.041 seconds

Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area (수도권지역의 지상기반 원격탐사자료를 이용한 지표면 태양에너지 산출)

  • Jee, Joon-Bum;Min, Jae-Sik;Lee, Hankyung;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.228-240
    • /
    • 2018
  • Solar energy is calculated using meteorological (14 station), ceilometer (2 station) and microwave radiometer (MWR, 7 station)) data observed from the Weather Information Service Engine (WISE) on the Seoul metropolitan area. The cloud optical thickness and the cloud fraction are calculated using the back-scattering coefficient (BSC) of the ceilometer and liquid water path of the MWR. The solar energy on the surface is calculated using solar radiation model with cloud fraction from the ceilometer and the MWR. The estimated solar energy is underestimated compared to observations both at Jungnang and Gwanghwamun stations. In linear regression analysis, the slope is less than 0.8 and the bias is negative which is less than $-20W/m^2$. The estimated solar energy using MWR is more improved (i.e., deterministic coefficient (average $R^2=0.8$) and Root Mean Square Error (average $RMSE=110W/m^2$)) than when using ceilometer. The monthly cloud fraction and solar energy calculated by ceilometer is greater than 0.09 and lower than $50W/m^2$ compared to MWR. While there is a difference depending on the locations, RMSE of estimated solar radiation is large over $50W/m^2$ in July and September compared to other months. As a result, the estimation of a daily accumulated solar radiation shows the highest correlation at Gwanghwamun ($R^2=0.80$, RMSE=2.87 MJ/day) station and the lowest correlation at Gooro ($R^2=0.63$, RMSE=4.77 MJ/day) station.

Change of Heart Rate Variability in Depressive Disorder after Physical or Psychological Stress (우울장애 환자에서 육체적 및 정신적 스트레스 시 심박변이도의 변화)

  • Lee, Jong-Hwa;Yu, Jaehak;Ryu, Seung-Ho;Ha, Ji-Hyeon;Jeon, Hong-Jun;Park, Doo-Heum
    • Sleep Medicine and Psychophysiology
    • /
    • v.25 no.1
    • /
    • pp.15-20
    • /
    • 2018
  • Objectives: This study was designed to assess the change of heart rate variability (HRV) at resting, upright, and psychological stress states in depressive disorder patients. Methods: HRV was measured at resting, upright, and psychological stress states in 62 depressive disorder patients. We used visual analogue scale (VAS) score to assess tension and stress severity. Beck depression inventory (BDI) and state trait anxiety inventories I and II (STAI-I and II) were used to assess depression and anxiety severity, respectively. Differences between HRV indices and VAS score were evaluated using paired t-tests. Gender difference analysis was conducted with ANCOVA. Results: SDNN (standard deviation of normal to normal intervals), LF/HF (low frequency/high frequency), and VLF (very low frequency) were significantly increased, while NN50 and pNN50 were significantly decreased in the upright position compared to resting state. SDNN, RMSSD (root mean square of the differences of successive normal to normal intervals), and VLF were significantly increased, while pNN50 was significantly decreased in the psychological stress state compared to resting state. SDNN, NN50, and pNN50 were significantly lower in an upright position compared to a state of psychological stress, and LF, HF, and LF/HF showed no significant differences Conclusion: The LF/HF ratio was significantly increased after physical stress in depressive disorder. However, the LF/HF ratio was not significantly increased after psychological stress, and the change in LF/HF ratio after physical stress and psychological stress did not significantly differ from each other. Significant increase in SDNN, NN50, and pNN50 in an upright posture compared to psychological stress suggests that depressive patients react more sensitively to physical stress than psychological stress.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Study of Motion Effects in Cartesian and Spiral Parallel MRI Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 직각좌표 및 나선주사 방식의 병렬 자기공명 영상에서 움직임 효과 연구)

  • Park, Sue-Kyeong;Ahn, Chang-Beom;Sim, Dong-Gyu;Park, Ho-Chong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Purpose : Motion effects in parallel magnetic resonance imaging (MRI) are investigated. Parallel MRI is known to be robust to motion due to its reduced acquisition time. However, if there are some involuntary motions such as heart or respiratory motions involved during the acquisition of the parallel MRI, motion artifacts would be even worse than those in conventional (non-parallel) MRI. In this paper, we defined several types of motions, and their effects in parallel MRI are investigated in comparisons with conventional MRI. Materials and Methods : In order to investigate motion effects in parallel MRI, 5 types of motions are considered. Type-1 and 2 are periodic motions with different amplitudes and periods. Type-3 and 4 are segment-based linear motions, where they are stationary during the segment. Type-5 is a uniform random motion. For the simulation, Cartesian and spiral grid based parallel and non-parallel (conventional) MRI are used. Results : Based on the motions defined, moving artifacts in the parallel and non-parallel MRI are investigated. From the simulation, non-parallel MRI shows smaller root mean square error (RMSE) values than the parallel MRI for the periodic (type-1 and 2) motions. Parallel MRI shows less motion artifacts for linear(type-3 and 4) motions where motions are reduced with shorter acquisition time. Similar motion artifacts are observed for the random motion (type-5). Conclusion : In this paper, we simulate the motion effects in parallel MRI. Parallel MRI is effective in the reduction of motion artifacts when motion is reduced by the shorter acquisition time. However, conventional MRI shows better image quality than the parallel MRI when fast periodic motions are involved.

  • PDF

Thin Layer Drying and Quality Characteristics of Ainsliaea acerifolia Sch. Bip. Using Far Infrared Radiation (원적외선을 이용한 단풍취의 박층 건조 및 품질 특성)

  • Ning, Xiao Feng;Li, He;Kang, Tae Hwan;Lee, Jun Soo;Lee, Jeong Hyun;Ha, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.6
    • /
    • pp.884-892
    • /
    • 2014
  • The purpose of this study was to investigate the drying characteristics and drying models of Ainsliaea acerifolia Sch. Bip. using far-infrared thin layer drying. Far-infrared thin layer drying test on Ainsliaea acerifolia Sch. Bip. was conducted at two air velocities of 0.6 and 0.8 m/sec, as well as three drying temperatures of 40, 45, and $50^{\circ}C$ respectively. The drying models were estimated using coefficient of determination and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, leaf color changes, antioxidant activity, and contents of polyphenolics and flavonoids. The results revealed that increases in drying temperature and air velocity caused a reduction in drying time. The Thompson model was considered suitable for thin layer drying using far-infrared radiation for Ainsliaea accerifolia Sch. Bip. Greenness and yellowness values decreased and lightness values increased after far-infrared thin layer drying, and the color difference (${\Delta}E$) values at $40^{\circ}C$ were higher than those at $45^{\circ}C$ and $50^{\circ}C$. The antioxidant properties of Ainsliaea acerifolia Sch. Bip. decreased under all far-infrared thin layer drying conditions, and the highest polyphenolic content (37.9 mg/g), flavonoid content (22.7 mg/g), DPPH radical scavenging activity (32.5), and ABTS radical scavenging activity (31.1) were observed at a drying temperature of $40^{\circ}C$ with an air velocity of 0.8 m/sec.

Far Infrared Drying Characteristics of Seasoned Red Pepper Sauce Dried by Heated Air (1차 열풍건조 한 고추 다진 양념의 원적외선 건조특성)

  • Cho, Byeong Hyo;Lee, Jung Hyun;Kang, Tae Hwan;Lee, Hee Sook;Han, Chung Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1358-1365
    • /
    • 2016
  • The purpose of this study was to verify the drying characteristics of seasoned red pepper sauce and establish optimal drying conditions for far infrared drying of seasoned red pepper sauce. Seasoned red pepper sauce, which was dried by heated air, was used. One kg of seasoned red pepper was spread at thicknesses of 10 and 20 mm and dried by a far infrared dryer until a final moisture content of $15{\pm}0.5%$. The far infrared dryer conditions were air velocity of 0.6, 0.8 m/s and drying temperatures of 60, 70, and $80^{\circ}C$. The drying models were estimated using a determination coefficient and root mean square error. Drying characteristics were analyzed based on factors such as drying rate, color changes, content of capsaicinoids, and energy consumption. The results can be summarized as follows. The drying rate (that is, drying time) tended to be reduced as temperature and air velocity for drying increased. The Page and Henderson models were suitable for drying of seasoned red pepper sauce by a far infrared dryer. Redness decreased after far infrared drying under all experimental conditions. The color difference was 18.18 under the following conditions: thickness 20 mm, temperature $70^{\circ}C$, and air velocity 0.8 m/s. This value was slightly higher than those under other far infrared drying conditions. The capsaicinoid properties of seasoned red pepper sauce decreased under all far infrared drying conditions. The highest capsaicin (19.91 mg/100 g) and dihydrocapsaicin (12.87 mg/100 g) contents were observed at a thickness of 10 mm, temperature of $80^{\circ}C$, and air velocity of 0.8 m/s. Energy consumption decreased with higher temperature, slower air velocity, and thinner seasoned red pepper sauce.

Reproducibility of Gated Myocardial Perfusion SPECT for the Assessment of Myocardial Function: Comparison with Thallium-201 and Technetium-99m-MIBI (심근 기능 측정에 사용된 게이트 심근 관류 SPECT 방법의 재현성 평가: $^{201}Tl$$^{99m}Tc$-MIBI 게이트 SPECT의 비교)

  • Hyun, In-Young;Seo, Jeong-Kee;Hong, Eui-Soo;Kim, Dae-Hyuk;Kim, Sung-Eun;Kwan, Jun;Park, Keum-Soo;Choe, Won-Sick;Lee, Woo-Hyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2000
  • Purpose: We compared the reproducibility of $^{201}Tl\;and\;^{99m}Tc$-sestamibi (MIBI) gated SPECT measurement of myocardial function using the Germano algorithm Materials and Methods: Gated SPECT acquisition was repeated in the same position in 30 patients who received $^{201}Tl$ and in 26 who received $^{99m}Tc$-MIBI. The quantification of end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) on $^{201}Tl\;and\;^{99m}Tc$-MIBI gated SPECT was processed independently using Cedars quantitative gated SPECT software. The reproducibility of the assessment of myocardial function on $^{201}Tl$ gated SPECT was compared with that of $^{99m}Tc$-MIBI gated SPECT Results: Correlation between the two measurements for volumes and EF was excellent by the repeated gated SPECT studies of $^{201}Tl$ (r=0.928 to 0.986; p<0.05) and $^{99m}Tc$-MIBI (r=0.979 to 0.997; p<0.05). However, Bland Altman analysis revealed the 95% limits of agreement (2 SD) for volumes and EF were tighter by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 14.1 ml, ESV: 9.4 ml and EF: 5.5%) than by repeated $^{201}Tl$ gated SPECT (EDV: 24.1 ml, ESV: 18.6 ml and EF: 10.3%). The root mean square (RMS) values of the coefficient of variation (CV) for volumes und EFs were smaller by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 2.1 ml, ESV 2.7 ml and EF: 2.3%) than by repeated $^{201}Tl$ gated SPECT (EDV: 3.2 ml, ESV: 3.5 ml and EF: 5.2%). Conclusion: $^{99m}Tc$-MIBI provides more reproducible volumes and EF than $^{201}Tl$ on repeated acquisition gated SPECT. $^{99m}Tc$-MIBI gated SPECT is the preferable method for the clinical monitoring of myocardial function.

  • PDF

Estimating Grain Weight and Grain Nitrogen Content with Temperature, Solar Radiation and Growth Traits During Grain-Filling Period in Rice (등숙기 온도 및 일사량과 생육형질을 이용한 벼 종실중 및 종실질소함량 추정)

  • Lee, Chung-Kuen;Kim, Jun-Hwan;Son, Ji-Young;Yoon, Young-Hwan;Seo, Jong-Ho;Kwon, Young-Up;Shin, Jin-Chul;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.275-283
    • /
    • 2010
  • This experiment was conducted to construct process models to estimate grain weight (GW) and grain nitrogen content (GN) in rice. A model was developed to describe the dynamic pattern of GW and GN during grain-filling period considering their relationships with temperature, solar radiation and growth traits such as LAI, shoot dry-weight, shoot nitrogen content, grain number during grain filling. Firstly, maximum grain weight (GWmax) and maximum grain nitrogen content (GNmax) equation was formulated in relation to Accumulated effective temperature (AET) ${\times}$ Accumulated radiation (AR) using boundary line analysis. Secondly, GW and GN equation were created by relating the difference between GW and GWmax and the difference between GN and GNmax, respectively, with growth traits. Considering the statistics such as coefficient of determination and relative root mean square of error and number of predictor variables, appropriate models for GW and GN were selected. Model for GW includes GWmax determined by AET ${\times}$ AR, shoot dry weight and grain number per unit land area as predictor variables while model for GN includes GNmax determined by AET ${\times}$ AR, shoot N content and grain number per unit land area. These models could explain the variations of GW and GN caused not only by variations of temperature and solar radiation but also by variations of growth traits due to different sowing date, nitrogen fertilization amount and row spacing with relatively high accuracy.

Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific (북서태평양 GCOM-W1/AMSR2 해수면온도 검증 및 오차 특성)

  • Kim, Hee-Young;Park, Kyung-Ae;Woo, Hye-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.721-732
    • /
    • 2016
  • The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.

Fabrication and Characteristics of Zinc Oxide- and Gallium doped Zinc Oxide thin film transistor using Radio Frequency Magnetron sputtering at Room Temperature (Zinc Oxide와 갈륨이 도핑 된 Zinc Oxide를 이용하여 Radio Frequency Magnetron Sputtering 방법에 의해 상온에서 제작된 박막 트랜지스터의 특성 평가)

  • Jeon, Hoon-Ha;Verma, Ved Prakash;Noh, Kyoung-Seok;Kim, Do-Hyun;Choi, Won-Bong;Jeon, Min-Hyon
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.359-365
    • /
    • 2007
  • In this paper we present a bottom-gate type of zinc oxide (ZnO) and Gallium (Ga) doped zinc oxide (GZO) based thin film transistors (TFTs) through applying a radio frequency (RF) magnetron sputtering method at room temperature. The gate leakage current can be reduced up to several ph by applying $SiO_2$ thermally grown instead of using new gate oxide materials. The root mean square (RMS) values of the ZnO and GZO film surface were measured as 1.07 nm and 1.65 nm, respectively. Also, the transmittances of the ZnO and GZO film were more than 80% and 75%, respectively, and they were changed as their film thickness. The ZnO and GZO film had a wurtzite structure that was arranged well as a (002) orientation. The ZnO TFT had a threshold voltage of 2.5 V, a field effect mobility of $0.027\;cm^2/(V{\cdot}s)$, a on/off ratio of $10^4$, a gate voltage swing of 17 V/decade and it operated in a enhancement mode. In case of the GZO TFT, it operated in a depletion mode with a threshold voltage of -3.4 V, a field effect mobility of $0.023\;cm^2/(V{\cdot}s)$, a on/off ratio of $2{\times}10^4$ and a gate voltage swing of 3.3 V/decade. We successfully demonstrated that the TFTs with the enhancement and depletion mode type can be fabricated by using pure ZnO and 1wt% Ga-doped ZnO.