Browse > Article
http://dx.doi.org/10.5467/JKESS.2018.39.3.228

Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area  

Jee, Joon-Bum (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Min, Jae-Sik (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
Lee, Hankyung (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
Chae, Jung-Hoon (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
Kim, Sangil (Research Center for Atmospheric Environment, Hankuk University of Foreign Studies)
Publication Information
Journal of the Korean earth science society / v.39, no.3, 2018 , pp. 228-240 More about this Journal
Abstract
Solar energy is calculated using meteorological (14 station), ceilometer (2 station) and microwave radiometer (MWR, 7 station)) data observed from the Weather Information Service Engine (WISE) on the Seoul metropolitan area. The cloud optical thickness and the cloud fraction are calculated using the back-scattering coefficient (BSC) of the ceilometer and liquid water path of the MWR. The solar energy on the surface is calculated using solar radiation model with cloud fraction from the ceilometer and the MWR. The estimated solar energy is underestimated compared to observations both at Jungnang and Gwanghwamun stations. In linear regression analysis, the slope is less than 0.8 and the bias is negative which is less than $-20W/m^2$. The estimated solar energy using MWR is more improved (i.e., deterministic coefficient (average $R^2=0.8$) and Root Mean Square Error (average $RMSE=110W/m^2$)) than when using ceilometer. The monthly cloud fraction and solar energy calculated by ceilometer is greater than 0.09 and lower than $50W/m^2$ compared to MWR. While there is a difference depending on the locations, RMSE of estimated solar radiation is large over $50W/m^2$ in July and September compared to other months. As a result, the estimation of a daily accumulated solar radiation shows the highest correlation at Gwanghwamun ($R^2=0.80$, RMSE=2.87 MJ/day) station and the lowest correlation at Gooro ($R^2=0.63$, RMSE=4.77 MJ/day) station.
Keywords
surface solar radiation; microwave radiometer; ceilometer; cloud fraction; Weather Information Service Engine;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Ahn, S. H., Zo, I. S., Jee, J. B., Kim, B. Y., Lee, D. G., and Lee, K. T., 2016, The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region. Journal of Korean Earth Science Society, 37(1), 29-39. (in Korean)   DOI
2 Chae, J. H., Park, M. S., and Choi, Y. J., 2014, The WISE quality control system for integrated meteorological sensor data, Atmosphere, 24(3), 445-456. (in Korean)   DOI
3 Chiu, J. C., Holmes, J. A., Hogan, R. J., and O'Connor, E. J., 2014, The interdependence of continental warm cloud properties derived from unexploited solar background signals in ground-based lidar measurements, Atmospheric Chemistry and Physics, 14, 8389-8401.   DOI
4 Chiu, J. C., Huang, C. H., Marshak, A., Slutsker, I., Giles, D. M., Holben, B. N., Knyazikhin, Y., and Wiscombe, W. J., 2010, Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations, Journal of Geophysical Research, 115, D14202, doi:10.1029/2009JD013121.   DOI
5 Chiu, J. C., Marshak, A., Huang, C., Varnai, H. T., Hogan, R. J., Giles, D. M., Holben, B. N., O'Connor, E. J., Knyazikhin, Y., and Wiscombe, W. J., 2012, Cloud Droplet Size and Liqud Water Path Retrievals from Zenith Radiance Measurements: examples from the Atmosphric Radiation Measurement Program and the Aerosol Robotic Network. Atmospheric Chemistry and Physics, 12, 10313-10329.   DOI
6 Chiu, J. C., Marshak, A., Warren, J., Wiscombe, W. J., Valencia, S. C., and Welton, E. J., 2007, Cloud Optical Depth Retrievals from Solar Background "Signals" of Micropulse Lidars, IEEE Geoscience and Remote Sensing Lettetters, 4(3), 456-460.   DOI
7 Chou, M. D., 1991, The derivation of cloud parameters from satellite-measured radiances for use in surface radiation calculations. Journal of Atmospheric Sciences, 48(13), 1549-1558.   DOI
8 Chou, M. D. and M. J., Suarez, 1999, A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606, 15, 40 pp.
9 Cimini, D., 2013, Mixing layer height retrivals by multichannel microwave radiometer observations. Atmospheric Measurement Techniques, 6, 2941-2951.   DOI
10 Cimini, D., Campos, E., Ware, R. S., Albers, S., Giuliani, G., Oreamuno, J., Joe, P., Koch, S. E., Cober, S., and Westwater, E. 2011, Thermodynamic Atmospheric Profiling During the 2010 Winter Olympics using Ground-based Microwave Radiometry, IEEE Transactions on Geoscience and Remote Sensing, 1-11.
11 Cimini, D., Hewison, T. J., Martin, L., Guldner, J., Gaffard, C., and Marzano, F. S., 2006, Temperature and Humidity Profile Retrievals from Ground-based Microwave Radiometer during TUC, Meteorologiche Zeitschrifit, 15(5), 46-56.
12 Cimini, D., Nelson, M., Guldner, J., and Ware, R., 2015, Forecasting Indices from a ground-based microwave radiometer for Operational Meteorology, Atmospheric Measurement Techniques, 8, 315-333.   DOI
13 Crewell, S., Ebell, K., Lohnrt, U., and Turner, D. D., 2009, Can Liquid Water Profiles be Retrieved from Passive Microwave Zenith, Geophysical Research Letteer, 36, L06803, doi:10.1029/2008GL036934.
14 Felding, M. D., Chiu, J. C., Holgan, R. J., Feingold, G., Eloranta, E., O'Connor, E. J., and Cadeddu, M. P., 2015, Joint Retrievals of Cloud and Drizzle in Marine Boundary Layer Clouds using Ground-based radar, lidar and zenith radiances, Atmospheric Measurement Techniques, 8, 2663-2683.   DOI
15 Iqbal, M, 1983, An introduction to solar radiation. Academic Press, New York, 390pp.
16 Jee, J. B., Kim, Y. D., Lee, W. H. and Lee, K. T., 2010, Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea. Journal of Korean Earth Sciences Society, 31(7), 720-737. (in Korean)   DOI
17 Jee, J. B., Lee, H., Min, J. S. Chae, J. H. and Kim, S. 2017: Analysis of Radiation Energy Budget Using WISE Observation Data on the Seoul Metropolitan Area, Journal of the Solar Energy Society, 37(6), 103-114. (in Korean)
18 Kim, B. G., Schwartz, S. E., Miller, M. A., and Min, Q., 2003, Effective Radius of Cloud Droplets by Ground-based Remote Sensing: Relationship to Aerosol, Journal of Geophysical Research, 108(D23), 4740, doi:10.1029/2003JD003721.   DOI
19 Jee, J. B., Lee, W. H., Zo, I. S. and Lee, K. T., 2011, Correction of One-layer Solar Radiation Model by Multi-layer Line-by-line Solar Radiation Model. Atmosphere, 21, 151-162. (in Korean)
20 Jin, Y., Kai, K., Kawai, K., Nagai, T., Sakai, T., Yamazaki, A., Uchiyama, A., Batdorj, D., Sugimoto, N., and Nishizawa, T., 2015, Ceilometer Calibration for retrieval of Aerosol Optical Properties, Journal of Quantitative Spectroscopy and Radiative Transfer, 153, 49-56.   DOI
21 Kim, B. Y., Jee, J. B., Jeong, M. J., Zo, I. S. and Lee, K. T., 2015, Estimation of Total Cloud Amount from Skyviewer Image Data. Journal of Korean Earth Sciences Society, 36(4), 330-340. (in Korean)   DOI
22 Kim, B. Y., Jee, J. B., Zo, I. S., and Lee, K. T., 2016, Cloud cover retrieved from Skyviewer: A validation with human observations. Asia-Pacific Journal of Atmospheric Sciences, 1-10.
23 Kim, S., Jee, J. B., Min, J. S., and Park, J. G. 2016, Influence of 3D remote sensing observation data on prediction performance of storm-scale prediction system. Proceedings of the Autumn Meeting of KMS, 2016.10, 410-411. (in Korean)
24 Knupp, K. R., 2009, Ground-based passive microwave profiling during dynamic weather conditions. Journal of Atmospheric and Oceanic Technology, 26, 1057-1073.   DOI
25 Leckner, B., 1978, The Spectral Distribution of Solar Radiation at the Earth's Surface Elements of a Model. Solar Energy, 20, 143-150.   DOI
26 Lee, S. H., Hwang, S. E., Kim, J., and Ahn, M. H., 2017, Characteristics of Cloud Occurrence using Ceilometer Measurements and its Relationship to Precipitation over Seoul, Atmospheric Research, 201, 46-57.
27 Park, H. I., Zo, I. S., Kim, B. Y., Jee, J. B., and Lee, K. T., 2017, An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region, Journal of Korean Earth Sciences Society, 38(2), 120-140. (in Korean)
28 Sutter, M.., Durr, B. and Philipona, R., 2004, Comparison of two radiation algorithms for surface-based cloud-free sky detection. Journal of Geophysical Research, 109, D17202.   DOI
29 Park, M. S., Park, S. H, Chae, J. H., Choi, M. H., Song, Y., Kang, M and Roh, J. W., 2017, High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmospheric Measurement Technology, 10(4), 1575.   DOI
30 Shangguan, M., Heise, S., Bender, M., Dick, G., Ramatschi, M., and Wickert, J., 2015, Validation of GPS Atmospheric Water Vapor with WVR data in Satellite Tracking Mode, Annual Geophysics, 33, 55-61.   DOI
31 Tan, H., Mao, J., Chen, H., Chan, P. W., Wu, D., Li, F., and Deng, T. 2010, A study of a Retrival Method for Temperature and Humidity Profiles from Microwave Radiometer Observations Based on Principal Component Analysis and Stepwise Regression, Journal of Atmospheric and Oceanic Technology, 28, 378-389.
32 Turner, D. D., Clough, S. A., Liljegren, J. C., Clouthiaux, E. E., Cady-Pereira, K. E., and Gaustad, K. L., 2007, Retrieving Liquid Water Path and Precipitable Water from the Atmospheric Radiation Measurement (ARM) Microwave Radiometers, IEEE Transactions on Geosciences and Remote Sensing, 45(111), 3680-3690.   DOI
33 Zo, I.S., Jee, J.B., and Lee, K.T., 2014, Development of GWNU (Gangneung-Wonju National University) One-layer Transfer Model for Calculation of Solar Radiation Distribution of the Korea Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 575-584.   DOI
34 Turner, D. D., Vogelmann, A. M., Austin, R. T., Barnard, J. C., Cady-Pereira, K. J., Chiu, C., Clough, S. A., Flynn, C., Khaiyer, M. M., Liljeren, J., Jhonson, K., Lin, B., Long, C., Marshak, A., Matrosov, S. Y., McFarlane, S. A., Miller, M., Min, Q., Minnis, P., O'Hirok, W., Wang, Z., and Wiscombe, W. J., 2007, Thin Liquid Water Clouds: Their Importance and Our Challenge, Bulletin of American Meteorological Society, 177-189.
35 Won, H. Y., Kim, Y. H., and Jang, D. E., 2010, Characteristics of Precipitable Water Vapor and Liquid Water Path Retrieved from Ground-based Microwave Radiometric Profiler at Haenam NCIO, Atmosphere, 20(1), 1-12. (in Korean)
36 Won, H. Y., Kim, Y. H., and Lee, H. S., 2009, An Application of Brightness Temperature Received from a Ground-based Microwave Radiometer to Estimation of Precipitation Occurrences and Rainfall Intensity, Asia-Pacific Journal of Atmospheric Sciences, 45(1), 55-69.
37 Yang, D., Jirutitijaroen, P., and Walsh, W. M., 2012, Hourly solar irradiance time series forecasting using cloud cover index. Solar Energy, 86(12), 3531-3543.   DOI
38 Yang K., Marshak, A., Chiu, J. C., Wiscombe, W. J., Palm, S. P., Davis, A. B., Spangenberg, D. A., Nguyen, L., Spinhirne, J. D., and Minnis, P., 2008, Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal, Journal of Atmospheric Sciences, 65, 3513-3527.   DOI