• Title/Summary/Keyword: Roof waterproofing methods

Search Result 21, Processing Time 0.024 seconds

Bond Performance Test for Optimum Mixing Ratio Calculation of the Floatig Floor Method on Roof-top (옥상 뜬바닥 구조공법의 접착제 최적 배합비 산정을 위한 부착성능 실험)

  • Seo, Yu-Hyun;Park, Jun-Mo;Kim, Ok-Kyue;Jung, Il-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.111-112
    • /
    • 2016
  • Waterproofing methods for applying to roof-top in the building are various, but it is not enough to development, which are simplified and low-cost method for old building. Especially, these buildings have not only a low insulation, but a disadvantage for energy. A floating floor method is necessary for this. This study performs an experimentt about bonding capacity of complex panel for waterproofing and heat insulation. The bond strength experiment is based on KS F 4716, and it is considered by bond mix proportion about panel and slab.

  • PDF

A Study on Improving Water Proofing System of the roof (옥상방수 개선방향에 대한 연구)

  • Kwon Byung-Hun;Heo Jae-Hoon;Lee Sung-Il;Han Jung-Hoon;Kim Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.535-538
    • /
    • 2004
  • Recently, people have been more interested in the quality of the apartment house, and the new trend has come out, which we use the rooftop of big buildings, people take a propound interest in materials and methods of the rooftop waterproofing. So far, many methods have been developed for convenience of maintenance and use. However, we don't have enough methods and materials to handle many problems and causes. We need the method which is not influenced by movement and cracks of substrate.. Therefore, what we are going to do is to check and analyze the present waterproofing methods of the rooftop and then suggest the new way.

  • PDF

An Experimental Study about appling non-Exposure waterproofing method which combines the Cement Polymer Modified Waterproof Membrane coating and Self adhesive Rubberized Asphalt sheet to the Roof Structure. (무기질계 탄성 도막재와 자착식 고무 아스팔트 시트를 결합한 지붕구조물 비노출 방수공법에 관한 실험적 연구)

  • Moon, You-Seok;Lee, Sun-Gyu;Song, Je-Yeong;Gwak, Gyu-Seong;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.613-616
    • /
    • 2008
  • This study is about appling non-exposure waterproofing method which combines the Cement Polymer Modified Waterproof Membrane coating and Selfadhesive Rubberized Asphalt sheet to the Roof Structure, Because there are a lot of problems in previous methods. So We had the performance tests using waterproofing method which combines two materials, and we analyzed the results. This study showed us very important results. We had bond strength test and tensile test under high, normal and low temperature, and the results were successful. And we also tested for coping with crack and movement. We found that tested materials were safe in those conditions. I think that Non-Exposure waterproofing method which combines the Cement Polymer Modified Waterproof Membrane coating and Selfadhesive Rubberized Asphalt sheet is available to concrete structure.

  • PDF

A Study on the Performance Appraisal for Copper Sheet as Root Barrier Material Appling to Green Roof System (옥상녹화 및 인공지반녹화용 구리시트 방근재의 성능평가에 관한 연구)

  • Cho, Il-Kyu;Kwon, Shi-Won;Kwak, Kyu-Sung;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.5-8
    • /
    • 2007
  • Selection of proper root barrier as destination part of greening is very important in Root penetration resistance plan. To select proper root barrier, it need to understand composition of greening part, size, kind of plant, connection with waterproofing layer. In this point of view, we have establish greening on the roof or concrete structure, not been understand the structural mechanism. It means that we misunderstood about purpose of greening and using it. So, chosen materials and construction method was not proper for greening, it caused water leakage and decrease performance of concrete structure. Therefore, we examine the practical use of copper sheet considering environmental condition for green roof. Watertightness by water of greening part, root penetration resistance test by root penetration, bacteria resistance by must or bacteria in soil, chemical resistance by rain and chemical agent of fertilizer, and load resistance by soil depth, sire of plant. These suggested test methods could be referred as guideline to test in green roof system because of not exist any performance appraisal guideline or standard. Consequently, it should be analysis as technical and institutional subdividing test methods and it need to study constantly as varied angles.

  • PDF

A Study on Test Methods for Performance Appraisal of Root Barrier Appling to Green Roofs (옥상 및 인공지반녹화용 방근재의 성능기준 설정을 위한 방근성 시험방법에 관한 연구)

  • Oh, Sang-Keun;Kwak, Kyu-Sung;Sun, Yoon-Suk;Kwon, Shi-Won
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.1 s.23
    • /
    • pp.79-84
    • /
    • 2007
  • Selection of proper root barrier as destination part of greening is very important in Root penetration resistance plan. To select proper root barrier, it need to understand composition of greening part, size, kind of plant, connection with waterproofing layer. In this point of view, we have establish greening on the roof or concrete structure, not been understand the structural mechanism. It means that we misunderstood about purpose of greening and using it. So, chosen materials and construction method was not proper for greening, it caused water leakage and decrease performance of concrete structure. Therefore, we would suggest 5 items of test methods considering environmental condition for green roof. Watertightness by water of greening part, root penetration resistance test by root penetration, bacteria resistance by must or bacteria in soil, chemical resistance by rain and chemical agent of fertilizer, and load resistance by soil depth, size of plant. These suggested test methods could be referred as guideline to test in green roof system because of not exist any performance appraisal guideline or standard. Consequently, it should be analysis as technical and institutional subdividing test methods and it need to study constantly as varied angles.

The Effect of Impermeable Surface and Rainwater Infiltration Facilities on the Runoff pH of Housing Complexes (빗물 유출면 및 빗물 침투시설이 주거단지 유출빗물의 pH에 미치는 영향)

  • Hyun, Kyoung-Hak;Choi, Joung-Joo;Choung, Youn-Kyoo
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • In order to examine the effect of impermeable surface (rooftop, outdoor parking lot) and rainwater infiltration facilities on runoff pH, pH was measured. pH measurement spots were splash blocks accepted roof runoff of 3 sites, infiltration boxes and trenches accepted parking lot runoff and plastic rainwater harvesting facility accepted roof runoff. These measurements were operated at 3 housing complexes from 2006 to 2009. The rainwater runoff pH was influenced by the quality of the runoff surface material (concrete), the age of the building, waterproofing methods according to each housing site, antecedent rainfall conditions and others. Rain garden, infiltration boxes and trenches decreased the alkalinity of runoff by detention and infiltrating the roof and outdoor parking lot runoff. These results mean that decentralized rainwater management facilities of housing complexes can reduce effect on the outskirt aquatic ecosystem by the accumulation of substances causing pH rising in the infiltration facilities and rain garden.

A Study on the Defect Causes Type for Poly-Urethane Waterproofing in Roof (옥상 방수에 있어서 폴리우레탄 도막방수의 하자발생 유형에 관한 연구)

  • Shin, Hyung-John
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.3 s.25
    • /
    • pp.128-134
    • /
    • 2005
  • Up to now, the various water proofing methods and materials have been developed. For the water proofing methods, poly-urethane membrane method is one of the commonly used and increase market share in water proofing industry due to it's many advantages. However, in spite of it's many advantages over other water proofing methods, water proofing defect occurs frequently. With this respect, the study investigate water proofing defect causes in roof water proofing. The study investigate 13 water proofing construction site in Sunchon city in oder to find urethane membrane defection causes and their type. As a results of the study, the followings are founded. 1) Among various water proofing defection causes, problems of water remain phenomenon due to surface horizontal level defect which occupy $25\;\%$ of total defect causes is the most commonly occur. 2) The second defect cause which occupy $15\;\%$ of total defect causes is the swell up phenomenon due to surface dry problem. For the prevention of water proofing defection in roof using urethane membrane, the followings are recommended. 1) Faultless surface treatment before using urethane membrane 2) Develop improved urethane membrane material 3) Improve urethane membrane construction technique

Resistance to Root Penetration of Root Barrier for Green Roof System (옥상녹화용 방근층 구성재료의 방근성능에 관한 실험적 연구)

  • Kim, Hyun-Soo;Jang, Dae-Hee;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.123-129
    • /
    • 2008
  • The purpose of this study is to test performances of 14 types of root barrier materials by applying testing plant: and soils suitable for weather and natural features of Korea. For testing Plants, Plioblastus pygmaed Mitford A and Pyracantha angustifolia have been selected. For testing soil, mixture of pearlite and peat moss in 3:1 ratio Testing container has been fabricated with duplicated structure having inner and outer containers. And the outer container has 2 hinges on its side wall to allow opening and closing. Wet rock wool with 50mm in thickness has been inserted between inner and outer containers to allow root to penetrate through root barrier material and continue to grow. We planted 12 Plioblastus pygmaed Mitford A. and 4 Pyracantha angustifolia per one testing container. Three testing samples have been made for 1 type of root barrier material, which become a total 42 specimens. Planted testing samples have been installed within the greenhouse, which will be observed regularly for 2 years from now on. We started test from July 11, 2008 and had performed intermediate observations every month for initial 3 months. From the 3rd intermediate observation on Sept. 18, we confirmed that 6 types of roe barrier materials have penetrated roots. Even though two types of them have been generally used as root barrier materials for roof planting system, all of three testing samples have a lot of penetrated roots. This result proves that it is not reasonable to introduce testing methods of root barrier from Europe. USA or Japan.

Examination Conditions of Root Barrier for Green Roof System and Result of Intermediate Observation of Three Months against Representative Root Barrier (옥상녹화용 방근층의 방근성 시험조건 설정 및 주요 방근소재에 대한 3개월간의 중간관찰 결과)

  • Shin, Yun-Ho;Jang, Dae-Hee;Kim, Hyun-Soo;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.245-249
    • /
    • 2008
  • The purpose of this study is to test performances of 14 types of root barrier materials by applying testing plants and soils suitable for weather and natural features of Korea. For testing plants, Plioblastus pygmaed Mitford A. and Pyracantha angustifolia have been selected. For testing soil, mixture of pearlite and peat moss in 3:1 ratio(volume). Testing container has been fabricated with duplicated structure having inner and outer containers. And the outer container has 2 hinges on its side wall to allow opening and closing. Wet rock wool with 50mm in thickness has been inserted between inner and outer containers to allow root to penetrate through root barrier material and continue to grow. We planted 12 Plioblastus pygmaed Mitford A. and 4 Pyracantha angustifolia per one testing container. Three testing samples have been made for 1 type of root barrier material, which become a total 42 specimens. Planted testing samples have been installed within the greenhouse, which will be observed regularly for 2 years from now on. We started test from July 11, 2008 and had performed intermediate observations every month for initial 3 months. From the 3rd intermediate observation on Sept. 18, we confirmed that 6 types of root barrier materials have penetrated roots. Even though two types of them(EDPM Sheet, Polyethylene Sheet) have been generally used as root barrier materials for roof planting system, all of three testing samples have a lot of penetrated roots. This result proves that it is not reasonable to introduce testing methods of root barrier from Europe or Japan.

  • PDF

Establishment of Service Life of Educational Facilities - Focused on the rooftop waterproofing and floor finishing -

  • Lee, KangHee;Chae, ChangU
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.5-12
    • /
    • 2014
  • Building has been deteriorated gradually owing to geographic, physical complex and other factors. School living condition has a key role to improve the learning ability, life attitude and qualifications to adopt to social life. Therefore, it is important for school environment to keep the living condition. Repair time and scope of school facilities are required to maintain the function and performance to plan the long term repair. But there are little information about the school maintenance such as repair time and function. In this paper, it aimed at providing the service life to suggest the repair time and scope in the roof-proofing and floor finishing which used the three estimation method in probabilistic approach. The service life has a key role to decide the repair time and to make the plan for the repair maintenance. Results of this study are as follows ; First, the 1st repair time were taken through three methods in probabilistic and deterministic functions to eliminate the estimation bias. Second, the service life is suggested 36 years of an elementary school, 34 years of a middle school and 41 years of a high school. Third, the service life of a floor finishing is 43 years of an elementary, 39 years of a middle school and 41 years of a high school. The above study could not include the detailed information about the materials and repair works. Therefore it needs a further study to reflect the detailed information and to make a repair strategy.