• Title/Summary/Keyword: Roles Stress

Search Result 577, Processing Time 0.029 seconds

The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation

  • Sakuraba, Yasuhito;Park, So-Yon;Paek, Nam-Chon
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.390-395
    • /
    • 2015
  • Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a staygreen phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.

Msi1-Like (MSIL) Proteins in Fungi

  • Yang, Dong-Hoon;Maeng, Shinae;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.41 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Msi1-like (MSIL) proteins, which are eukaryote-specific and contain a series of WD40 repeats, have pleiotropic roles in chromatin assembly, DNA damage repair, and regulation of nutrient/stress-sensing signaling pathways. In the fungal kingdom, the functions of MSIL proteins have been studied most intensively in the budding yeast model Saccharomyces cerevisiae, an ascomycete. Yet their functions are largely unknown in other fungi. Recently, an MSIL protein, Msl1, was discovered and functionally characterized in the pathogenic yeast Cryptococcus neoformans, a basidiomycete. Interestingly, MSIL proteins appear to have redundant and unique roles in both fungi, suggesting that MSIL proteins may have evolutionarily divergent roles in different parts of the fungal kingdom. In this review, we will describe the current findings regarding the role of MSIL proteins in fungi and discuss future directions for research on this topic.

Roles of Forkhead-box Transcription Factors in Controlling Development, Pathogenicity, and Stress Response in Magnaporthe oryzae

  • Park, Jaejin;Kong, Sunghyung;Kim, Seryun;Kang, Seogchan;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.136-150
    • /
    • 2014
  • Although multiple transcription factors (TFs) have been characterized via mutagenesis to understand their roles in controlling pathogenicity and infection-related development in Magnaporthe oryzae, the causal agent of rice blast, if and how forkhead-box (FOX) TFs contribute to these processes remain to be characterized. Four putative FOX TF genes were identified in the genome of M. oryzae, and phylogenetic analysis suggested that two of them (MoFKH1 and MoHCM1) correspond to Ascomycota-specific members of the FOX TF family while the others (MoFOX1 and MoFOX2) are Pezizomycotina-specific members. Deletion of MoFKH1 (${\Delta}Mofkh1$) resulted in reduced mycelial growth and conidial germination, abnormal septation and stress response, and reduced virulence. Similarly, ${\Delta}Mohcm1$ exhibited reduced mycelial growth and conidial germination. Conidia of ${\Delta}Mofkh1$ and ${\Delta}Mohcm1$ were more sensitive to one or both of the cell cycle inhibitors hydroxyurea and benomyl, suggesting their role in cell cycle control. On the other hand, loss of MoFOX1 (${\Delta}Mofox1$) did not show any noticeable changes in development, pathogenicity, and stress response. Deletion of MoFOX2 was not successful even after repeated attempts. Taken together, these results suggested that MoFKH1 and MoHCM1 are important in fungal development and that MoFKH1 is further implicated in pathogenicity and stress response in M. oryzae.

A Study on Farm Women's Stress in Productive Activity (농초여성의 생산활동 스트레스에 관한연구)

  • 양순미
    • Journal of Families and Better Life
    • /
    • v.14 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The purpose of this study is to show farm women's stress under productive activity role multiple overload through family characteristic (pattern and number) and characteristic(type working time and involvement proportion) of productive activity. The outline of the study is as follow; 1. Stress by pattern and number of a family is highest in a four generation family and increases according as the number of the family increases. 2. The characteristic of productive activity : 1) Stress based on type of productive activity is highest in Type III of the most multiple overload roles. 2) in light of stress based working time area of household task activity is in inverse proportion to working time but area of farming and wage earning activity are approximately in direct proportion to it. The two-way ANOVA analysis show that stress in Type I of area of household task increases but in Type IV it decreases as working time increases 3) In stress based on involvement proportion to it. The wo-way ANOVA analysis show that stress in Type I of area of household task increases but in Type IV it decreases as working time increases. 3) In stress based on involvement proportion in three as working time increases 3). In stress based on involvement proportion in three activity areas the more the involvement proportion the less of the stress : an inverse ratio.

  • PDF

Improved Cell Viability of Lactobacillus crispatus KLB46 by Stress Adaptation (Lactobacillus crispatus KLB46의 스트레스 전처리시 열 내성 증진효과)

  • Kwak, Dae-Yung;Kang, Chang-Ho;Jeon, HanEul;So, Jae-Seong
    • KSBB Journal
    • /
    • v.29 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • Lactobacilli, the dominant species of microorganisms in the vaginal flora of healthy women, play important roles to prevent bacterial vaginosis and other sexually transmitted diseases. In this study, we carried out studies on stress adaptation prior to various stress treatment. We found that heat or salt adapted KLB46 showed higher cell viability than non adapted upon heat stress at $60^{\circ}C$ for 20 min. When chloramphenicol was added during the adaptation process, heat tolerance was abolished. This result suggested that de novo protein synthesis was essential during adaptation.

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil;Oh, Goo-Taeg
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.497-505
    • /
    • 2011
  • Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.

The stress positioning control method for slim CRTs glass design using FEM

  • Hwang, Yoing-Ik;Lee, Tae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1053-1057
    • /
    • 2007
  • One of the important roles of glass is safety guarantee in CRTs. It is working under high vacuum and has to be maintained continuously for the atmosphere pressure, humidity, and excitation etc,. This paper propose to CRTs glass design method via the stress positioning control for slim CRTs using FEM to ensure the national safety standard and newly demanded safety standard by CRTs set makers.

  • PDF

Physiological Roles of Erythroascorbate Peroxidase In Candida albicans

  • Kwak, Min-kyu;Kang, Sa-Ouk
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.41-41
    • /
    • 2001
  • Ascorbate peroxidase catalyze the oxidation of ascorbic acid through the reaction with hydrogen peroxide. Ascorbic acid are utilized as a substrate in oxidative stress. In Candida albieans, ascorbic acid is used as antioxidants, so called D-erythroascorbic acid (EASe). Oxidative stress change concentrations of EASC resulting in interaction with alternative oxidase (AOX).(omitted)

  • PDF

A novel potassium channel opener, KR-31378, protects cortex neurons from oxidative injury by restoring antioxidant enzyme activities and glutathione levels

  • Kim, Sun-Ok;Cho, In-Sun;Lee, Dong-Ha;Lim, Hong;Yoo, Sung-Eun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.197.1-197.1
    • /
    • 2003
  • Neuronal hyperexcitability followed by high level of intracellular calcium and oxidative stress play critical roles in neuronal cell death in stroke and neurotrauma. Hence, KR-31378, a novel benzopyran derivative was designed as a new therapeutic strategy for neuroprotection possessing both anti-oxidant and potassium channel modulating activities. In the present study, we tested for its neuroprotective efficacy against oxidative stress-induced cell death in primary cortical cultures and further investigated its neuroprotective mechanism. (omitted)

  • PDF

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions

  • Mansour, Abdelaziz;Mannaa, Mohamed;Hewedy, Omar;Ali, Mostafa G.;Jung, Hyejung;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.432-448
    • /
    • 2022
  • Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.