Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.07.2022.0090

Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions  

Mansour, Abdelaziz (Department of Integrated Biological Science, Pusan National University)
Mannaa, Mohamed (Department of Integrated Biological Science, Pusan National University)
Hewedy, Omar (Department of Plant Agriculture, University of Guelph)
Ali, Mostafa G. (Department of Botany and Microbiology, Faculty of Science, Benha University)
Jung, Hyejung (Department of Integrated Biological Science, Pusan National University)
Seo, Young-Su (Department of Integrated Biological Science, Pusan National University)
Publication Information
The Plant Pathology Journal / v.38, no.5, 2022 , pp. 432-448 More about this Journal
Abstract
Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.
Keywords
miRNA; Oryza sativa; planthopper; symbiotic bacteria;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Griffiths, R. I., Thomson, B. C., James, P., Bell, T., Bailey, M. and Whiteley, A. S. 2011. The bacterial biogeography of British soils. Environ. Microbiol. 13:1642-1654.   DOI
2 Harun-Or-Rashid, M., Kim, H.-J., Yeom, S.-I., Yu, H.-A., Manir, M. M., Moon, S.-S., Kang, Y. J. and Chung, Y. R. 2018. Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Front. Plant Sci. 9:1904.
3 Huang, C.-Y., Wang, H., Hu, P., Hamby, R. and Jin, H. 2019. Small RNAs: big players in plant-microbe interactions. Cell Host Microbe 26:173-182.   DOI
4 Hudzik, C., Hou, Y., Ma, W. and Axtell, M. J. 2020. Exchange of small regulatory RNAs between plants and their pests. Plant Physiol. 182:51-62.   DOI
5 Hussain, Q., Liu, Y., Zhang, A., Pan, G., Li, L., Zhang, X., Song, X., Cui, L. and Jin, Z. 2011. Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol. Ecol. 78:116-128.   DOI
6 Hussain, Q., Pan, G. X., Liu, Y. Z., Zhang, A., Li, L. Q., Zhang, X. H. and Jin, Z. J. 2012. Microbial community dynamics and function associatedwith rhizosphere over periods of rice growth. Plant Soil Environ. 58:55-61.   DOI
7 Chen, M.-Y., Ye, W.-Y., Xiao, H.-M., Li, M.-Z., Cao, Z.-H.,Ye, X.-H., Zhao, X.-X., He, K. and Li, F. 2019. LncRNAs are potentially involved in the immune interaction between small brown planthopper and rice stripe virus. J. Integr. Agric. 18:2814-2822.   DOI
8 Ye, X., Xu, L., Li, X., He, K., Hua, H., Cao, Z., Xu, J., Ye, W., Zhang, J., Yuan, Z. and Li, F. 2019. MiR-34 modulates wing polyphenism in planthopper. PLoS Genet. 15:e1008235.
9 Zhang, Y.-C., Yu, Y., Wang, C.-Y., Li, Z.-Y., Liu, Q., Xu, J., Liao, J.-Y., Wang, X.-J., Qu, L.-H., Chen, F., Xin, P., Yan, C., Chu, J., Li, H.-Q. and Chen, Y.-Q. 2013. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol. 31:848-852.   DOI
10 Akami, M., Ren, X.-M., Qi, X., Mansour, A., Gao, B., Cao, S. and Niu, C.-Y. 2019. Symbiotic bacteria motivate the foraging decision and promote fecundity and survival of Bactrocera dorsalis (Diptera : Tephritidae). BMC Microbiol. 19:229.
11 Aljbory, Z. and Chen, M.-S. 2018. Indirect plant defense against insect herbivores: a review. Insect Sci. 25:2-23.   DOI
12 Baltrus, D. A. 2017. Adaptation, specialization, and coevolution within phytobiomes. Curr. Opin. Plant Biol. 38:109-116.   DOI
13 Berlec, A. 2012. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci. 193-194:96-102.   DOI
14 Bottrell, D. G. and Schoenly, K. G. 2012. Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to highly-yielding rice production in tropical Asia. J. Asia-Pac. Entomol. 15:122-140.   DOI
15 Buee, M., de Boer, W., Martin, F., van Overbeek, L. and Jurkevitch, E. 2009. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189-212.   DOI
16 Chang, Z.-X., Akinyemi, I. A., Guo, D.-Y. and Wu, Q. 2018. Characterization and comparative analysis of microRNAs in the rice pest Sogatella furcifera. PLoS ONE 13:e0204517.
17 Chen, C.-J., Liu, Q., Zhang, Y.-C., Qu, L.-H., Chen, Y.-Q. and Gautheret, D. 2011. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biol. 8:538-547.   DOI
18 Yan, Y., Zhang ,Y., Yang, K., Sun, Z., Fu, Y., Chen, X. and Fang, R. 2011. Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J. 65:820-828.   DOI
19 Zhou, G., Wang, T., Lou, Y., Cheng, J., Zhang, H. and Xu, J.-H. 2014. Identification and characterization of microRNAs in small brown planthopper (Laodephax striatellus) by nextgeneration sequencing. PLoS ONE 9:e103041.
20 Tan, J., Wu, Y., Guo, J., Li, H., Zhu, L., Chen, R., He, G. and Du, B. 2020. A combined microRNA and transcriptome analyses illuminates the resistance response of rice against brown planthopper. BMC Genomics 21:144.
21 Shah, A. Z., Ma, C., Zhang, Y., Zhang, Q., Xu, G. and Yang, G. 2022. Decoyinine induced resistance in rice against small brown planthopper Laodelphax striatellus. Insects 13:104.
22 Shikano, I., Rosa, C., Tan, C.-W. and Felton, G. W. 2017. Tritrophic interactions: microbe-mediated plant effects on insect herbivores. Annu. Rev. Phytopathol. 55:313-331.   DOI
23 Song, X., Wang, D., Ma, L., Chen, Z., Li, P., Cui, X., Liu, C., Cao, S., Chu, C., Tao, Y. and Cao, X. 2012. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J. 71:378-389.
24 Song, Y., Shi, J., Xiong, Z., Shentu, X. and Yu, X. 2021. Three antimicrobials alter gut microbial communities and causing different mortality of brown planthopper, Nilaparvata lugens Stal. Pestic. Biochem. Physiol. 174:104806.
25 Sun, W., Xu, X. H., Li, Y., Xie, L., He, Y., Li, W., Lu, X., Sun, H. and Xie, X. 2020. OsmiR530 acts downstream of OsPIL15 to regulate grain yield in rice. New Phytol. 226:823-837.   DOI
26 Jiang, Y., Liang, Y., Li, C., Wang, F., Sui, Y., Suvannang, N., Zhou, J. and Sun, B. 2016. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95:250-261.   DOI
27 Sun, Z., Liu, Z., Zhou, W., Jin, H., Liu, H., Zhou, A., Zhang, A. and Wang, M.-Q. 2016. Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Sci. Rep. 6:26043.
28 Sunkar, R., Zhou, X., Zheng, Y., Zhang, W. and Zhu, J.-K. 2008. Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol. 8:25.
29 Wang, Z., Xia, Y., Lin, S., Wang, Y., Guo, B., Song, X., Ding, S., Zheng, L., Feng, R., Chen, S., Bao, Y., Sheng, C., Zhang, X., Wu, J., Niu, D., Jin, H. and Zhao, H. 2018. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae. Plant J. 95:584-597.   DOI
30 Jiang, L., Bonkowski, M., Luo, L., Kardol, P., Zhang, Y., Chen, X., Li, D., Xiao, Z., Hu, F. and Liu, M. 2020. Combined addition of chemical and organic amendments enhances plant resistance to aboveground herbivores through increasing microbial abundance and diversity. Biol. Fertil. Soils 56:1007-1022.   DOI
31 Jones, J. D. G., Vance, R. E. and Dangl, J. L. 2016. Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395.
32 Wu, J., Yang, Z., Wang, Y., Zheng, L., Ye, R., Ji, Y., Zhao, S., Ji, S., Liu, R., Xu, L., Zheng, H., Zhou, Y., Zhang, X., Cao, X., Xie, L., Wu, Z., Qi, Y. and Li, Y. 2015. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife 4:e05733.
33 Wari, D., Alamgir, K. M., Mujiono, K., Hojo, Y., Tani, A., Shinya, T., Nakatani, H. and Galis, I. 2019a. Brown planthopper honeydew-associated symbiotic microbes elicit momilactones in rice. Plant Signal. Behav. 14:1655335.
34 Wei, L. Q., Yan, L. F. and Wang, T. 2011. Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol. 12:R53.
35 Wei, T. and Li, Y. 2016. Rice reoviruses in insect vectors. Annu. Rev. Phytopathol. 54:99-120.   DOI
36 Wu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C. and Qi, Y. 2010. DNA methylation mediated by a microRNA pathway. Mol. Cell 38:465-475.   DOI
37 Wari, D., Kabir, M. A., Mujiono, K., Hojo, Y., Shinya, T., Tani, A., Nakatani, H. and Galis, I. 2019b. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J. Exp. Bot. 70:1683-1696.   DOI
38 Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H. and You, M. 2017. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front. Microbiol. 8:663.
39 Bonnet, E., Van de Peer, Y. and Rouze, P. 2006. The small RNA world of plants. New Phytol. 171:451-468.   DOI
40 Bing, X.-L., Zhao, D.-S., Peng, C.-W., Huang, H.-J. and Hong, X.-Y. 2020. Similarities and spatial variations of bacterial and fungal communities in field rice planthopper (Hemiptera: Delphacidae) populations. Insect Sci. 27:947-963.   DOI
41 Brader, G., Compant, S., Vescio, K., Mitter, B., Trognitz, F., Ma, L.-J. and Sessitsch, A. 2017. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 55:61-83.   DOI
42 Breidenbach, B., Pump, J., and Dumont, M. G. 2016. Microbial community structure in the rhizosphere of rice plants. Front. Microbiol. 6:1537.
43 Carthew, R.W. and Sontheimer, E. J. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642-655.   DOI
44 Lu, S., Sun, Y.-H. and Chiang, V. L. 2008. Stress-responsive microRNAs in Populus. Plant J. 55:131-151.   DOI
45 Yang, M., Xu, Z., Zhao, W., Liu, Q., Li, Q., Lu, L., Liu, R., Zhang, X. and Cui, F. 2018. Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus. BMC Plant Biol. 18:219.
46 Yu, C., Chen, Y., Cao, Y., Chen, H., Wang, J., Bi, Y.-M., Tian, F., Yang, F., Rothstein, S. J., Zhou, X. and He, C. 2018. Overex-pression of miR169o, an overlapping microRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efficiency and susceptibility to bacterial blight in rice. Plant Cell Physiol. 59:1234-1247.   DOI
47 Juarez, M. T., Kui, J. S., Thomas, J., Heller, B. A. and Timmermans, M. C. P. 2004. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84-88.   DOI
48 Kettles, G. J., Drurey, C., Schoonbeek, H.-J., Maule, A. J. and Hogenhout, S. A. 2013. Resistance of A rabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol. 198:1178-1190.   DOI
49 Liu, W., Zhang, X., Wu, N., Ren, Y. and Wang, X. 2020. High diversity and functional complementation of alimentary canal microbiota ensure small brown planthopper to adapt different biogeographic environments. Front. Microbiol. 10:2953.
50 Mannaa, M. and Seo, Y.-S. 2021. Plants under the attack of allies: moving towards the plant pathobiome paradigm. Plants 10:125.
51 Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556.   DOI
52 Chen, J., Li, T. C., Pang, R., Yue, X. Z., Hu, J. and Zhang, W. Q. 2018. Genome-wide screening and functional analysis reveal that the specific microRNA nlu-miR-173 regulates molting by targeting Ftz-F1 in Nilaparvata lugens. Front. Physiol. 9:1854.
53 Chaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M. and Maity, S. 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. Int. J. Sci. Res. Publ. 3:1-8.
54 Carvalho, F. P. 2006. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9:685-692.   DOI
55 Chang, Z.-X., Tang, N., Wang, L., Zhang, L.-Q., Akinyemi, I. A. and Wu, Q.-F. 2016. Identification and characterization of microRNAs in the white-backed planthopper, Sogatella furcifera. Insect Sci. 23:452-468.   DOI
56 Li, T.-P., Zha, S.-S., Zhou, C.-Y., Gong, J.-T., Zhu, Y.-X., Zhang, X., Xi, Z. and Hong, X.-Y. 2020. Newly introduced Cardinium endosymbiont reduces microbial diversity in the rice brown planthopper Nilaparvata lugens. FEMS Microbiol. Ecol. 96:fiaa194.
57 Lindow, S. E. and Andersen, G. L. 1996. Influence of immigration on epiphytic bacterial populations on navel orange leaves. Appl. Environ. Microbiol. 62:2978-2987.   DOI
58 Liu, L., Zhang, K.-J., Rong, X., Li, Y.-Y. and Liu, H. 2019. Identification of Wolbachia-responsive miRNAs in the small brown planthopper, Laodelphax striatellus. Front. Physiol. 10:928.
59 Tang, T., Zhang, Y., Cai, T., Deng, X., Liu, C., Li, J., He, S., Li, J. and Wan, H. 2021. Antibiotics increased host insecticide susceptibility via collapsed bacterial symbionts reducing detoxification metabolism in the brown planthopper, Nilaparvata lugens. J. Pest Sci. 94:757-767.   DOI
60 Yuan, C., Zhang, L., Hu, H., Wang, J., Shen, J. and He, J. 2018. The biogeography of fungal communities in paddy soils is mainly driven by geographic distance. J. Soils Sediments 18:1795-1805.   DOI
61 Zeigler, R. S. and Barclay, A. 2008. The relevance of rice. Rice 1:3-10.   DOI
62 Zhang, C., Ding, Z., Wu, K., Yang, L., Li, Y., Yang, Z., Shi, S., Liu, X., Zhao, S., Yang, Z., Wang, Y., Zheng, L., Wei, J., Du, Z., Zhang, A., Miao, H., Li, Y., Wu, Z. and Wu, J. 2016. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant 9:1302-1314.   DOI
63 Zhang, J.-H., Yu, N., Xu, X.-X. and Liu, Z.-W. 2019. Community structure, dispersal ability and functional profiling of microbiome existing in fat body and ovary of the brown planthopper, Nilaparvata lugens. Insect Sci. 26:683-694.   DOI
64 Yu, H., Ji, R., Ye, W., Chen, H., Lai, W., Fu, Q. and Lou, Y. 2014. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice. PLoS ONE 9:e88528.
65 Zhang, X., Li, T.-P., Zhou, C.-Y., Zhao, D.-S., Zhu, Y.-X., Bing, X.-L., Huang, H.-J. and Hong, X.-Y. 2020. Antibiotic exposure perturbs the bacterial community in the small brown planthopper Laodelphax striatellus. Insect Sci. 27:895-907.   DOI
66 Zhang, X., Bao, Y., Shan, D., Wang, Z., Song, X., Wang, Z., Wang, J., He, L., Wu, L., Zhang, Z., Niu, D., Jin, H. and Zhao, H. 2018a. Magnaporthe oryzae induces the expression of a microRNA to suppress the immune response in rice. Plant Physiol. 177:352-368.   DOI
67 Mayoral, J. G., Hussain, M., Joubert, D. A., Iturbe-Ormaetxe, I., O'Neill, S. L. and Asgari, S. 2014. Wolbachia small noncoding RNAs and their role in cross-kingdom communications. Proc Natl. Acad. Sci. U. S. A. 111:18721-18726.   DOI
68 Miller, D. L., Parish, A. J. and Newton, I. L. G. 2019. Transitions and transmission: behavior and physiology as drivers of honey bee-associated microbial communities. Curr. Opin. Microbiol. 50:1-7.   DOI
69 Miura, K., Ikeda, M., Matsubara, A., Song, X.-J., Ito, M., Asano, K., Matsuoka, M., Kitano, H. and Ashikari, M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet. 42:545-549.   DOI
70 Muller, T. and Ruppel, S. 2014. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 87:2-17.   DOI
71 Chen, J., Liang, Z., Liang, Y., Pang, R. and Zhang, W. 2013. Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 43:839-848.   DOI
72 Thapa, S., Ranjan, K., Ramakrishnan, B., Velmourougane, K. and Prasanna, R. 2018. Influence of fertilizers and rice cultivation methods on the abundance and diversity of phyllosphere microbiome. J. Basic Microbiol. 58:172-186.   DOI
73 Tong, A., Yuan, Q., Wang, S., Peng, J., Lu, Y., Zheng, H., Lin, L., Chen, H., Gong, Y., Chen, J. and Yan, F. 2017. Altered accumulation of osa-miR171b contributes to rice stripe virus infection by regulating disease symptoms. J. Exp. Bot. 68:4357-4367.   DOI
74 United Nations. 2005. World population prospects. The 2004 revision. Highlights. Population Division, Department of Economicand Social Affairs. United Nations, New York, USA. 91 pp.
75 Chen, Q., Lu, L., Hua, H., Zhou, F., Lu, L. and Lin, Y. 2012. Characterization and comparative analysis of small RNAs in three small RNA libraries of the brown planthopper (Nilaparvata lugens). PLoS ONE 7:e32860.
76 Cook, D. E., Mesarich, C. H. and Thomma, B. P. H. J. 2015. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53:541-563.   DOI
77 Davis, T. S., Crippen, T. L., Hofstetter, R. W. and Tomberlin, J. K. 2013. Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39:840-859.   DOI
78 De Costa, D. M., Pinto, M. T. C., Geethanjalee, H. D. N. and Dissanayake, N. 2006. Suppression of rice pathogens by phyllosphere associated microflora of different rice varieties in Sri Lanka. Trop. Sci. 46:97-104.   DOI
79 Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663.   DOI
80 Zhang, W., Chen, J., Keyhani, N. O., Zhang, Z., Li, S. and Xia, Y. 2015. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 16:867.
81 Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J. D. G. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436-439.   DOI
82 Peng, T., Lv, Q., Zhang, J., Li, J., Du, Y. and Zhao, Q. 2011. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J. Exp. Bot. 62:4943-4954.   DOI
83 Qiao, L., Zheng, L., Sheng, C., Zhao, H., Jin, H. and Niu, D. 2020. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. Plant J. 102:948-964.   DOI
84 Raaijmakers, J. M., Paulitz, T. C., Steinberg, C., Alabouvette, C. and Moenne-Loccoz, Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361.   DOI
85 Ren, G.-D., Zhu, J.-G. and Jia, Z.-J. 2014. Contrasting response patterns of rice phyllosphere bacterial taxa to elevated CO2. Pedosphere 24:544-552.   DOI
86 Rincon-Florez, V. A., Carvalhais, L. C. and Schenk, P. M. 2013. Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581-612.   DOI
87 Salvador-Guirao, R., Hsing, Y.-I. and San Segundo, B. 2018. The polycistronic miR166k-166h positively regulates rice immunity via post-transcriptional control of EIN2. Front. Plant Sci. 9:337.
88 Sanchez-Canizares, C., Jorrin, B., Poole, P. S. and Tkacz, A. 2017. Understanding the holobiont: the interdependence of plants and their microbiome. Curr. Opin. Microbiol. 38:188-196.   DOI
89 Van Ex, F., Jacob, Y. and Martienssen, R. A. 2011. Multiple roles for small RNAs during plant reproduction. Curr. Opin. Plant Biol. 14:588-593.   DOI
90 Urayama, S., Moriyama, H., Aoki, N., Nakazawa, Y., Okada, R., Kiyota, E., Miki, D., Shimamoto, K. and Fukuhara, T. 2010. Knock-down of OsDCL2 in rice negatively affects maintenance of the endogenous dsRNA virus, Oryza sativa endornavirus. Plant Cell Physiol. 51:58-67.   DOI
91 Vijayakumar, M. M., More, R. P., Rangasamy, A., Gandhi, G. R., Muthugounder, M., Thiruvengadam, V., Samaddar, S., Jalali, S. K. and Sa, T. 2018. Gut bacterial diversity of insecticidesusceptible and -resistant nymphs of the brown planthopper Nilaparvata lugens Stal (Hemiptera: Delphacidae) and elucidation of their putative functional roles. J. Microbiol. Biotechnol. 28:976-986.   DOI
92 Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M. 2016. Root exudation and rhizosphere biology. Plant Physiol. 132:44-51.
93 Wang, J., Yao, W., Zhu, D., Xie, W. and Zhang, Q. 2015. Genetic basis of sRNA quantitative variation analyzed using an experimental population derived from an elite rice hybrid. eLife 4:e03913.
94 Wang, Z.-L., Pan, H.-B, Wu, W., Li, M.-Y. and Yu, X.-P. 2021. The gut bacterial flora associated with brown planthopper is affected by host rice varieties. Arch. Microbiol. 203:325-333.   DOI
95 Gordon, J., Knowlton, N., Relman, D. A., Rohwer, F. and Youle, M. 2013. Superorganisms and holobionts. Microbe 8:152-153.
96 Guo, W., Wu, G., Yan, F., Lu, Y., Zheng, H., Lin, L., Chen, H. and Chen, J. 2012. Identification of novel Oryza sativa miRNAs in deep sequencing-based small RNA libraries of rice infected with Rice stripe virus. PLoS ONE 7:e46443.
97 Niu, D., Lii, Y. E., Chellappan, P., Lei, L., Peralta, K., Jiang, C., Guo, J., Coaker, G. and Jin, H. 2016. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat. Commun. 7:11324.
98 Sattar, S. and Thompson, G. A. 2016. Small RNA regulators of plant-hemipteran interactions: micromanagers with versatile roles. Front. Plant Sci. 7:1241.
99 Sazama, E. J., Ouellette, S. P. and Wesner, J. S. 2019. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 48:127-133.   DOI
100 Nevita, T., Sharma, G. D. and Pandey, P. 2018. Differences in rice rhizosphere bacterial community structure by application of lignocellulolytic plant-probiotic bacteria with rapid composting traits. Ecol. Eng. 120:209-221.   DOI
101 Pathak, M. D. and Khan, Z. R. 1994. Insect pests of rice. International Rice Research Institute, Manila, Philippines. 89 pp.
102 Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q. and Wei, T. 2016. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci. Rep. 6:20699.
103 Hardoim, P. R., van Overbeek, L. S. and van Elsas, J. D. 2008. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16:463-471.   DOI
104 Harsonowati, W., Astuti, R. I. and Wahyudi, A. T. 2017. Leaf blast disease reduction by rice-phyllosphere actinomycetes producing bioactive compounds. J. Gen. Plant Pathol. 83:98-108.   DOI
105 Kim, H. and Lee, Y.-H. 2020. The rice microbiome: a model platform for crop holobiome. Phytobiomes J. 4:5-18.   DOI
106 Wang, Z.-L., Wang, T.-Z., Zhu, H.-F., Pan, H.-B. and Yu, X.-P. 2020. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. Insect Sci. 27:883-894.   DOI
107 Li, F., Hua, H., Ali, A. and Hou, M. 2019. Characterization of a bacterial symbiont Asaia sp. in the white-backed planthopper, Sogatella furcifera, and its effects on host fitness. Front. Microbiol. 10:2179.
108 Li, T., Chen, J., Fan, X., Chen, W. and Zhang, W. 2017. MicroRNA and dsRNA targeting chitin synthase A reveal a great potential for pest management of the hemipteran insect Nilaparvata lugens. Pest Manag. Sci. 73:1529-1537.   DOI
109 Lee, H. J., Jeong, S. E., Kim, P. J., Madsen, E. L. and Jeon, C. O. 2015. High resolution depth distribution of Bacteria, Archaea, methanotrophs, and methanogens in the bulk and rhizosphere soils of a flooded rice paddy. Front. Microbiol. 6:639.
110 Zhao, Z.-X., Feng, Q., Cao, X.-L., Zhu, Y., Wang, H., Chandran, V., Fan, J., Zhao, J.-Q., Pu, M., Li, Y. and Wang, W.-M. 2020. Osa-miR167d facilitates infection of Magnaporthe oryzae in rice. J. Integr. Plant Biol. 62:702-715.   DOI
111 Zhang, X., Zhao, H., Gao, S., Wang, W.-C., Katiyar-Agarwal, S., Huang, H.-D., Raikhel, N. and Jin, H. 2011. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell 42:356-366.   DOI
112 Zhang, Y., Tang, T., Li, W., Cai, T., Li, J. and Wan, H. 2018b. Functional profiling of the gut microbiomes in two different populations of the brown planthopper, Nilaparvata lugens. J. Asia-Pac. Entomol. 21:1309-1314.   DOI
113 Zhu, Q.-H. and Helliwell, C. A. 2011. Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 62:487-495.   DOI
114 Xu, L., Zhang, J., Zhan, A., Wang, Y., Ma, X., Jie, W., Cao, Z., Omar, M. A. A., He, K. and Li, F. 2020. Identification and analysis of microRNAs associated with wing polyphenism in the brown planthopper, Nilaparvata lugens. Int. J. Mol. Sci. 21:9754.
115 Engel, P. and Moran, N. A. 2013. The gut microbiota of insects: diversity in structure and function. FEMS Microbiol. Rev. 37:699-735.   DOI
116 Feng, Q., Li, Y., Zhao, Z.-X. and Wang, W.-M. 2021. Contribution of small RNA pathway to interactions of rice with pathogens and insect pests. Rice 14:15.
117 Franche, C., Lindstrom, K. and Elmerich, C. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35-59.   DOI
118 Xie, J., Peng, Y. and Xia, Y. 2021. Genome-wide identification and analysis of Nilaparvata lugens microRNAs during challenge with the entomopathogenic fungus Metarhizium anisopliae. J. Fungi 7:295.
119 Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E. and Carrington, J. C. 2004. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2:e104.
120 Xu, H.-X., Zheng, X.-S., Yang, Y.-J., Wang, X., Ye, G.-Y. and Lu, Z.-X. 2014b. Bacterial community in different populations of rice brown planthopper nilaparvata lugens (Stal). Rice Sci. 21:59-64.   DOI
121 Yan, X.-T., Ye, Z.-X., Wang, X., Zhang, C.-X., Chen, J.-P., Li, J.-M. and Huang, H.-J. 2021. Insight into different host range of three planthoppers by transcriptomic and microbiomic analysis. Insect Mol. Biol. 30:287-296.   DOI
122 Xu, D., Mou, G., Wang, K. and Zhou, G. 2014a. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice. Virus Res. 190:60-68.   DOI
123 Barr, K. L., Hearne, L. B., Briesacher, S., Clark, T. L. and Davis, G. E. 2010. Microbial symbionts in insects influence downregulation of defense genes in maize. PLoS ONE 5:e11339.
124 Dai, Z., Tan, J., Zhou, C., Yang, X., Yang, F., Zhang, S., Sun, S., Miao, X. and Shi, Z. 2019. The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa). Plant Biotechnol. J. 17:1657-1669.   DOI
125 Golden, D. E., Gerbasi, V. R. and Sontheimer, E. J. 2008. An inside job for siRNAs. Mol. Cell 31:309-312.   DOI
126 Ding, L.-J., Cui, H.-L., Nie, S.-A., Long, X.-E., Duan, G.-L. and Zhu, Y.-G. 2019. Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol. Ecol. 95:fiz040.
127 Knief, C., Delmotte, N., Chaffron, S., Stark, M., Innerebner, G., Wassmann, R., von Mering, C. and Vorholt, J. A. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6:1378-1390.   DOI
128 Ursell, L. K., Metcalf, J. L., Parfrey, L. W. and Knight, R. 2012. Defining the human microbiome. Nutr. Rev. 70(Suppl 1):S38-S44.   DOI
129 Arnold, A. E., Mejia, L. C., Kyllo, D., Rojas, E. I., Maynard, Z., Robbins, N. and Herre, E. A. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl. Acad. Sci. U. S. A. 100:15649-15654.   DOI
130 Axtell, M. J. 2013. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol. 64:137-159.   DOI
131 Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363.   DOI