Browse > Article
http://dx.doi.org/10.5941/MYCO.2013.41.1.1

Msi1-Like (MSIL) Proteins in Fungi  

Yang, Dong-Hoon (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University)
Maeng, Shinae (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University)
Bahn, Yong-Sun (Department of Biotechnology, Center for Fungal Pathogenesis, College of Life Science and Biotechnology, Yonsei University)
Publication Information
Mycobiology / v.41, no.1, 2013 , pp. 1-12 More about this Journal
Abstract
Msi1-like (MSIL) proteins, which are eukaryote-specific and contain a series of WD40 repeats, have pleiotropic roles in chromatin assembly, DNA damage repair, and regulation of nutrient/stress-sensing signaling pathways. In the fungal kingdom, the functions of MSIL proteins have been studied most intensively in the budding yeast model Saccharomyces cerevisiae, an ascomycete. Yet their functions are largely unknown in other fungi. Recently, an MSIL protein, Msl1, was discovered and functionally characterized in the pathogenic yeast Cryptococcus neoformans, a basidiomycete. Interestingly, MSIL proteins appear to have redundant and unique roles in both fungi, suggesting that MSIL proteins may have evolutionarily divergent roles in different parts of the fungal kingdom. In this review, we will describe the current findings regarding the role of MSIL proteins in fungi and discuss future directions for research on this topic.
Keywords
Chromatin assembly factor; Histone; Msi1; Retinoblastoma; WD40;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Garrett S, Broach J. Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMPdependent protein kinase. Genes Dev 1989;3:1336-48.   DOI   ScienceOn
2 Garrett S, Menold MM, Broach JR. The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol Cell Biol 1991;11:4045-52.   DOI
3 Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/ Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 1998;17:3556-64.   DOI   ScienceOn
4 Zhang Z, Smith MM, Mymryk JS. Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 2001;12:699-710.   DOI   ScienceOn
5 Hartley AD, Ward MP, Garrett S. The Yak1 protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism. Genetics 1994;136:465-74.
6 Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME. Sensing the environment: lessons from fungi. Nat Rev Microbiol 2007;5:57-69.   DOI   ScienceOn
7 Kozubowski L, Lee SC, Heitman J. Signalling pathways in the pathogenesis of Cryptococcus. Cell Microbiol 2009;11:370-80.   DOI   ScienceOn
8 Alspaugh JA, Cavallo LM, Perfect JR, Heitman J. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 2000;36:352-65.   DOI   ScienceOn
9 Maeng S, Ko YJ, Kim GB, Jung KW, Floyd A, Heitman J, Bahn YS. Comparative transcriptome analysis reveals novel roles of the Ras and cyclic AMP signaling pathways in environmental stress response and antifungal drug sensitivity in Cryptococcus neoformans. Eukaryot Cell 2010;9:360-78.   DOI   ScienceOn
10 Taylor-Harding B, Binne UK, Korenjak M, Brehm A, Dyson NJ. p55, the Drosophila ortholog of RbAp46/RbAp48, is required for the repression of dE2F2/RBF-regulated genes. Mol Cell Biol 2004;24:9124-36.   DOI   ScienceOn
11 Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT. The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol Cell Biol 1996;16:6149-59.   DOI
12 Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. The transcriptional program of sporulation in budding yeast. Science 1998;282:699-705.   DOI   ScienceOn
13 Kennedy BK, Liu OW, Dick FA, Dyson N, Harlow E, Vidal M. Histone deacetylase-dependent transcriptional repression by pRB in yeast occurs independently of interaction through the LXCXE binding cleft. Proc Natl Acad Sci U S A 2001; 98:8720-5.   DOI   ScienceOn
14 Kleff S, Andrulis ED, Anderson CW, Sternglanz R. Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 1995;270:24674-7.   DOI   ScienceOn
15 Rosaleny LE, Antunez O, Ruiz-Garcia AB, Perez-Ortin JE, Tordera V. Yeast HAT1 and HAT2 deletions have different life-span and transcriptome phenotypes. FEBS Lett 2005; 579:4063-8.   DOI   ScienceOn
16 Suter B, Pogoutse O, Guo X, Krogan N, Lewis P, Greenblatt JF, Rine J, Emili A. Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 2007;5:38.   DOI
17 Ruggieri R, Tanaka K, Nakafuku M, Kaziro Y, Toh-e A, Matsumoto K. MSI1, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1989;86:8778-82.   DOI   ScienceOn
18 Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 1985;40:27-36.   DOI   ScienceOn
19 Pan X, Heitman J. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 1999;19:4874-87.   DOI
20 Sass P, Field J, Nikawa J, Toda T, Wigler M. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1986;83:9303-7.   DOI   ScienceOn
21 Wilson RB, Tatchell K. SRA5 encodes the low-Km cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol 1988;8:505-10.   DOI
22 Robinson LC, Gibbs JB, Marshall MS, Sigal IS, Tatchell K. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science 1987;235:1218-21.   DOI
23 Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kaziro Y, Toh-e A. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 1990;60: 803-7.   DOI   ScienceOn
24 Ross EM, Wilkie TM. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 2000;69: 795-827.   DOI   ScienceOn
25 Cabrera-Vera TM, Vanhauwe J, Thomas TO, Medkova M, Preininger A, Mazzoni MR, Hamm HE. Insights into G protein structure, function, and regulation. Endocr Rev 2003; 24:765-81.   DOI   ScienceOn
26 Fedor-Chaiken M, Deschenes RJ, Broach JR. SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell 1990;61:329-40.   DOI   ScienceOn
27 Qian YW, Wang YC, Hollingsworth RE Jr, Jones D, Ling N, Lee EY. A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature 1993;364:648-52.   DOI   ScienceOn
28 Vandenbol M, Jauniaux JC, Grenson M. The Saccharomyces cerevisiae NPR1 gene required for the activity of ammoniasensitive amino acid permeases encodes a protein kinase homologue. Mol Gen Genet 1990;222:393-9.   DOI
29 Lorenz MC, Heitman J. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 1998;17:1236-47.   DOI   ScienceOn
30 Enomoto S, McCune-Zierath PD, Gerami-Nejad M, Sanders MA, Berman J. RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev 1997;11:358-70.   DOI   ScienceOn
31 Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 1999; 402:555-60.   DOI   ScienceOn
32 Kim JA, Haber JE. Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proc Natl Acad Sci U S A 2009;106:1151-6.   DOI   ScienceOn
33 Enomoto S, Berman J. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 1998;12:219-32.   DOI
34 Sharp JA, Fouts ET, Krawitz DC, Kaufman PD. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 2001;11:463-73.   DOI   ScienceOn
35 Sharp JA, Franco AA, Osley MA, Kaufman PD. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 2002; 16:85-100.   DOI   ScienceOn
36 Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998;9:3273-7.   DOI   ScienceOn
37 Pratt ZL, Drehman BJ, Miller ME, Johnston SD. Mutual interdependence of MSI1 (CAC3) and YAK1 in Saccharomyces cerevisiae. J Mol Biol 2007;368:30-43.   DOI   ScienceOn
38 Marheineke K, Krude T. Nucleosome assembly activity and intracellular localization of human CAF-1 changes during the cell division cycle. J Biol Chem 1998;273:15279-86.   DOI   ScienceOn
39 Zhu X, Demolis N, Jacquet M, Michaeli T. MSI1 suppresses hyperactive RAS via the cAMP-dependent protein kinase and independently of chromatin assembly factor-1. Curr Genet 2000;38:60-70.   DOI
40 Johnston SD, Enomoto S, Schneper L, McClellan MC, Twu F, Montgomery ND, Haney SA, Broach JR, Berman J. CAC3 (MSI1) suppression of RAS2G19V is independent of chromatin assembly factor I and mediated by NPR1. Mol Cell Biol 2001;21:1784-94.   DOI   ScienceOn
41 Ge Z, Wang H, Parthun MR. Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly. J Biol Chem 2011;286:16790-9.   DOI   ScienceOn
42 Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R, Sendra R. Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J Biol Chem 2004;279:16033-43.   DOI   ScienceOn
43 Peserico A, Simone C. Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011;2011:371832.
44 Parthun MR, Widom J, Gottschling DE. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 1996;87:85-94.   DOI   ScienceOn
45 Kelly TJ, Qin S, Gottschling DE, Parthun MR. Type B histone acetyltransferase Hat1p participates in telomeric silencing. Mol Cell Biol 2000;20:7051-8.   DOI
46 Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci U S A 2000;97:10637-42.   DOI   ScienceOn
47 Dumbliauskas E, Lechner E, Jaciubek M, Berr A, Pazhouhandeh M, Alioua M, Cognat V, Brukhin V, Koncz C, Grossniklaus U, et al. The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. Embo J 2011;30:731-43.   DOI   ScienceOn
48 Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 2001;104:131-42.   DOI   ScienceOn
49 Exner V, Taranto P, Schönrock N, Gruissem W, Hennig L. Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. Development 2006; 133:4163-72.   DOI   ScienceOn
50 Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F. Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol 2008;6:e194.   DOI   ScienceOn
51 Alexandre C, Möller-Steinbach Y, Schonrock N, Gruissem W, Hennig L. Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol Plant 2009;2:675-87.   DOI   ScienceOn
52 Yang DH, Maeng S, Strain AK, Floyd A, Nielsen K, Heitman J, Bahn YS. Pleiotropic roles of the Msi1-like protein Msl1 in Cryptococcus neoformans. Eukaryot Cell 2012;11:1482-95.   DOI   ScienceOn
53 Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. The ancient regulatory-protein family of WD-repeat proteins. Nature 1994;371:297-300.   DOI   ScienceOn
54 Smith TF. Diversity of WD-repeat proteins. Subcell Biochem 2008;48:20-30.   DOI   ScienceOn
55 Xu C, Min J. Structure and function of WD40 domain proteins. Protein Cell 2011;2:202-14.   DOI   ScienceOn
56 Stirnimann CU, Petsalaki E, Russell RB, Muller CW. WD40 proteins propel cellular networks. Trends Biochem Sci 2010; 35:565-74.   DOI   ScienceOn
57 Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 2001;58:2085-97.   DOI   ScienceOn
58 Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 2004;1677:3-11.   DOI   ScienceOn
59 Kaufman PD, Kobayashi R, Stillman B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 1997;11:345-57.   DOI   ScienceOn
60 Smith S, Stillman B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 1989;58:15-25.   DOI   ScienceOn
61 Shibahara K, Stillman B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 1999;96:575-85.   DOI   ScienceOn
62 Game JC, Kaufman PD. Role of Saccharomyces cerevisiae chromatin assembly factor-I in repair of ultraviolet radiation damage in vivo. Genetics 1999;151:485-97.
63 Hennig L, Bouveret R, Gruissem W. MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol 2005;15:295-302.   DOI   ScienceOn
64 Hayashi T, Fujita Y, Iwasaki O, Adachi Y, Takahashi K, Yanagida M. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 2004; 118:715-29.   DOI   ScienceOn
65 Verreault A, Kaufman PD, Kobayashi R, Stillman B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 1998;9:96-108.
66 Ross JF, Liu X, Dynlacht BD. Mechanism of transcriptional repression of E2F by the retinoblastoma tumor suppressor protein. Mol Cell 1999;3:195-205.   DOI   ScienceOn
67 Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998;391:597-601.   DOI   ScienceOn
68 Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylase to repress transcription. Cell 1998;92:463-73.   DOI   ScienceOn
69 Magnaghi-Jaulin L, Groisman R, Naguibneva I, Robin P, Lorain S, Le Villain JP, Troalen F, Trouche D, Harel-Bellan A. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 1998;391:601-5.   DOI   ScienceOn
70 Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci U S A 1998;95: 10493-8.   DOI
71 Iavarone A, Massague J. E2F and histone deacetylase mediate transforming growth factor beta repression of cdc25A during keratinocyte cell cycle arrest. Mol Cell Biol 1999;19:916-22.   DOI
72 Stiegler P, De Luca A, Bagella L, Giordano A. The COOHterminal region of pRb2/p130 binds to histone deacetylase 1 (HDAC1), enhancing transcriptional repression of the E2Fdependent cyclin A promoter. Cancer Res 1998;58:5049-52.
73 Ach RA, Taranto P, Gruissem W. A conserved family of WD- 40 proteins binds to the retinoblastoma protein in both plants and animals. Plant Cell 1997;9:1595-606.   DOI
74 Kenzior AL, Folk WR. AtMSI4 and RbAp48 WD-40 repeat proteins bind metal ions. FEBS Lett 1998;440:425-9.   DOI   ScienceOn
75 Hennig L, Taranto P, Walser M, Schonrock N, Gruissem W. Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Development 2003;130:2555-65.   DOI   ScienceOn
76 Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L, Martinez- Zapater JM. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat Genet 2004;36:162-6.   DOI   ScienceOn
77 Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Kim HJ, Lee MH, Moon J, Lee I, et al. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat Genet 2004;36:167-71.   DOI   ScienceOn
78 Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 2001;13:935-41.   DOI
79 Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 1999;24:181-5.   DOI   ScienceOn