DOI QR코드

DOI QR Code

The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation

  • Sakuraba, Yasuhito (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Park, So-Yon (Department of Plant Pathology, Physiology and Weed Science) ;
  • Paek, Nam-Chon (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2015.02.10
  • Published : 2015.05.31

Abstract

Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a staygreen phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.

Keywords

References

  1. Armstead, I., Donnison, I., Aubry, S., Harper, J., Hörtensteiner, S., James, C., Mani, J., Moffet, M., Ougham, H., Roberts, L., et al. (2007). Cross-species identification of Mendel's/locus. Science 315, 73. https://doi.org/10.1126/science.1132912
  2. Barry, C.S., McQuinn, R.P., Chung, M.Y., Besuden, A., and Giovannoni, J.J. (2008). Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 147, 179-187. https://doi.org/10.1104/pp.108.118430
  3. Biswal, B. (1995). Carotenoid catabolism during leaf senescence and its control by light. J. Photochem. Photobiol. B, Biol. 30, 3-13. https://doi.org/10.1016/1011-1344(95)07197-A
  4. Cha, K.W., Lee, Y.J., Koh, H.J., Lee, B.M., Nam Y.M., and Paek, N.C. (2002). Isolation, characterization, and mapping of the stay green mutant in rice. Theor. Appl. Genet. 104, 526-532. https://doi.org/10.1007/s001220100750
  5. Chao, W.S., Liu, V., Thomson, W.W., Platt, K., and Walling, L.L. (1995). The impact of chlorophyll-retention mutations, d1d2 and cyt-G1, during embryogeny in soybean. Plant Physiol. 107, 253-262. https://doi.org/10.1104/pp.107.1.253
  6. Clerkx, E.J., Vries, H.B., Ruys, G.J., Groot, S.P., and Koornneef, M. (2003). Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity. Plant Physiol. 132, 1077-1084. https://doi.org/10.1104/pp.103.022715
  7. Delmas, F., Sankaranarayanan, S., Deb, S., Widdup, E., Bournonville, C., Bollier, N., Northey, J.G.B., McCourt, P., and Samuel, M.A. (2013). ABI3 controls embryo degreening through Mendel's I locus. Proc. Natl. Acad. Sci. USA 110, e3888-e3894. https://doi.org/10.1073/pnas.1308114110
  8. Fang, C., Li, C., Li, W., Wang, Z., Zhou, Z., Shen, Y., Wu, M., Wu, Y., Li, G., Kong, L.A., et al. (2014). Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J. 77, 700-712. https://doi.org/10.1111/tpj.12419
  9. Forsberg, J., Strom, J., Kieselbach, H., Larsson, K., Alexciev, A., Engstrom, A., and Akerlund, H.E. (2005). Protease activities in the chloroplast capable of cleaving an LHCII N-terminal peptide. Physiol. Plant. 123, 21-29. https://doi.org/10.1111/j.1399-3054.2005.00441.x
  10. Fraser, P.D., Truesdale, M.R., Bird, C.R., Schuch, W., and Bramley, P.M. (1994). Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 105, 405-413. https://doi.org/10.1104/pp.105.1.405
  11. Fraser, P.D., and Bramley, P.M. (2004). The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228-265 https://doi.org/10.1016/j.plipres.2003.10.002
  12. Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., et al. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123-2132. https://doi.org/10.1093/pcp/pcp147
  13. Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251-1261. https://doi.org/10.1105/tpc.4.10.1251
  14. Gray, J., Close, P.S., Briggs, S.P., and Johal, G.S. (1997). A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89, 25-31. https://doi.org/10.1016/S0092-8674(00)80179-8
  15. Gray, J., Janick-Buckner, D., Buckner, B., Close, P.S., and Johal, G.S. (2002). Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol. 130, 1894-1907. https://doi.org/10.1104/pp.008441
  16. Guiamet, J.J., Schwartz, E., Pichersky, E., and Nooden, L.D. (1991). Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol. 96, 227-231. https://doi.org/10.1104/pp.96.1.227
  17. Hirashima, M., Tanaka, R., and Tanaka, A. (2009). Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol. 50, 719-729. https://doi.org/10.1093/pcp/pcp035
  18. Horie, Y., Ito, H., Kusaba, M., Tanaka, R., and Tanaka, A. (2009). Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J. Biol. Chem. 284, 17449-17456. https://doi.org/10.1074/jbc.M109.008912
  19. Hortensteiner, S. (2009). Stay-green regulates chlorophyll and chlorophyll- binding protein degradation during senescence. Trends Plant Sci. 14, 155-162. https://doi.org/10.1016/j.tplants.2009.01.002
  20. Hortensteiner, S., and Krautler, B. (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807, 977-988. https://doi.org/10.1016/j.bbabio.2010.12.007
  21. Huang, W., Chen, Q., Zhu, Y., Hu, F., Zhang, L., Ma, Z., He, Z., and Huang, J. (2013). Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light. Mol. Plant 6, 1673-1691 https://doi.org/10.1093/mp/sst069
  22. Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111. https://doi.org/10.1016/S1360-1385(01)02223-3
  23. Jiang, H., Li, M., Liang, N., Yan, H., Wei, Y., Xu, X., Liu, J., Xu, Z., Chen, F., and Wu, G. (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52, 197-209. https://doi.org/10.1111/j.1365-313X.2007.03221.x
  24. Jiang, H., Chen, Y., Li, M., Xu, X., and Wu, G. (2011). Overexpression of SGR results in oxidative stress and lesion-mimic cell death in rice seedlings. J. Integr. Plant Biol. 253, 375-387.
  25. Johnson-Flanagan, A.M., and Spencer, M.S. (1994). Ethylene production during development of mustard (Brassica juncea) and canola (Brassica napus) seed. Plant Physiol. 106, 601-606. https://doi.org/10.1104/pp.106.2.601
  26. Kato, Y., and Sakamoto W. (2009). Protein quality control in chloroplast: a current model of D1 protein degradation in the photosystem II repair cycle. J. Biochem. 146, 463-469. https://doi.org/10.1093/jb/mvp073
  27. Koornneef, M., Hanhart, C.J., Hilhorst, H.W., and Karssen, C.M. (1989). In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol. 90, 463-469. https://doi.org/10.1104/pp.90.2.463
  28. Kusaba, M., Ito, H., Morita, R., Iida, S., Sato, Y., Fujimoto, M., Kawasaki, S., Tanaka, R., Hirochika, H., Nishimura, M., et al. (2007). Rice NON-YELLOW COLORING1 is involved in lightharvesting complex II and grana degradation during leaf senescence. Plant Cell 19, 1362-1375. https://doi.org/10.1105/tpc.106.042911
  29. Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., Ou, S., Wu, H., Sun, X., Chu, J., et al. (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. U.S.A. 111, 10013-10018. https://doi.org/10.1073/pnas.1321568111
  30. Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136. https://doi.org/10.1146/annurev.arplant.57.032905.105316
  31. Luo, Z., Zhang, J., Li, J., Yang, C., Wang, T., Ouyang, B., Li, H., Giovannoni, J., and Ye, Z. (2013). A STAY-GREEN protein SlSGR1 regulates lycopene and $\beta$-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 198, 442-452. https://doi.org/10.1111/nph.12175
  32. Mach, J.M., Castillo, A.R., Hoogstraten, R., and Greenberg, J.T. (2001). The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. Sci. U.S.A. 98, 771-776. https://doi.org/10.1073/pnas.98.2.771
  33. Mecey, C., Hauck, P., Trapp, M., Pumplin, N., Plovanich, A., Yao, J., and He, S.Y. (2011). A critical role of STAYGREEN/Mendel's I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. Plant Physiol. 157, 1965-1974. https://doi.org/10.1104/pp.111.181826
  34. Meguro, M., Ito, H., Takabayashi, A., Tanaka, R., and Tanaka, A. (2011). Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23, 3442-3453. https://doi.org/10.1105/tpc.111.089714
  35. Morita, R., Sato, Y., Masuda, Y., Nishimura, M., and Kusaba, M. (2009). Defect in non-yellow coloring 3, an alpha/beta hydrolase- fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J. 59, 940-952. https://doi.org/10.1111/j.1365-313X.2009.03919.x
  36. Nakagawara, E., Sakuraba, Y., Yamasato, A., Tanaka, R., and Tanaka, A. (2007). Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J. 49, 800-809 https://doi.org/10.1111/j.1365-313X.2006.02996.x
  37. Nakajima, S., Ito, H., Tanaka, R., and Tanaka, A. (2012). Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds. Plant Physiol. 160, 261-273. https://doi.org/10.1104/pp.112.196881
  38. Olinares, P.D., Kim, J., and van Wijk, K.J. (2011). The Clp protease system; a central component of the chloroplast protease network. Biochim. Biophys. Acta 1807, 999-1011. https://doi.org/10.1016/j.bbabio.2010.12.003
  39. Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S.K., Jeong, S.W., Seo, H.S., Koh, H.J., et al. (2007). The senescence- induced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649-1664. https://doi.org/10.1105/tpc.106.044891
  40. Pruzinska, A., Tanner, G., Anders, I., Roca, M., and Hortensteiner, S. (2003). Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc. Natl. Acad. Sci. U.S.A. 100, 15259-15264. https://doi.org/10.1073/pnas.2036571100
  41. Pruzinskz, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Luthi, E., Muller, T., Krautler, B., and Hortensteiner, S. (2007). In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19, 369-387. https://doi.org/10.1105/tpc.106.044404
  42. Ren, G., An, K., Liao, Y., Zhou, X., Cao, Y., Zhao, H., Ge, X., and Kuai, B. (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144, 1429-1441. https://doi.org/10.1104/pp.107.100172
  43. Rong, H., Tang, Y., Zhang, H., Wu, P., Chen, Y., Li, M., Wu, G., and Jiang, H. (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J. Plant Physiol. 170, 1367-1373. https://doi.org/10.1016/j.jplph.2013.05.016
  44. Sakuraba, Y., Schelbert, S., Park, S.Y., Han, S.H., Lee, B.D., Andres, C.B., Kessler, F., Hortensteiner, S., and Paek, N.C. (2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24, 507-518. https://doi.org/10.1105/tpc.111.089474
  45. Sakuraba, Y., Kim, Y.S., Yoo, S.C., Hörtensteiner, S., and Paek, N.C. (2013). 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochem. Biophys. Res. Commun. 430, 32-37. https://doi.org/10.1016/j.bbrc.2012.11.050
  46. Sakuraba, Y., Lee, S.H., Kim, Y.S., Park, O.K., Hörtensteiner, S., and Paek, N.C. (2014a). Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing. J. Exp. Bot. 65, 3915-3925. https://doi.org/10.1093/jxb/eru008
  47. Sakuraba, Y., Park, S.Y., Kim, Y.S., Wang, S.H., Yoo, S.C., Hörtensteiner, S., and Paek, N.C. (2014b). Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol. Plant 7, 1288-1302. https://doi.org/10.1093/mp/ssu045
  48. Sakuraba, Y., Kim, D., Kim, Y.S., Hortensteiner, S., and Paek, N.C. (2014c). Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett. 588, 3830-3837. https://doi.org/10.1016/j.febslet.2014.09.018
  49. Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., and Choi, G. (2014d). Phytochrome-interacting transcription factors PIF4 and PIF5 induced leaf senescence in Arabidopsis. Nat. Commun. 5, 4636.
  50. Sato, Y., Morita, R., Katsuma, S., Nishimura, M., Tanaka, A., and Kusaba, M. (2009). Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J. 57, 120-131. https://doi.org/10.1111/j.1365-313X.2008.03670.x
  51. Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M., and DellaPenna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16, 1419-1432. https://doi.org/10.1105/tpc.021360
  52. Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., and Hortensteiner, S. (2009). Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767-785. https://doi.org/10.1105/tpc.108.064089
  53. Tanaka, R., Hirashima, M., Satoh, S., and Tanaka, A. (2003). The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of the pheophorbide a oxygenase activity does not lead to the "stay-green" phenotype in Arabidopsis. Plant Cell Physiol. 44, 1266-1274. https://doi.org/10.1093/pcp/pcg172
  54. Tang, Y., Li, M., Chen, Y., Wu, P., Wu, G., and Jiang, H. (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 168, 1952-1959. https://doi.org/10.1016/j.jplph.2011.05.026
  55. Thomas, H. and Howarth, C.J. (2000). Five ways to stay green. J. Exp. Bot. 51, 329-337. https://doi.org/10.1093/jexbot/51.suppl_1.329
  56. Wang, Q., Sullivan, R.W., Kight, A., Henry, R.L., Huang, J., Jones, A.M., and Korth, K.L. (2004). Deletion of the chloroplastlocalized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol. 136, 3594-3604. https://doi.org/10.1104/pp.104.049841
  57. Wei, Q., Guo, Y., and Kuai, B. (2011). Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Rep. 30, 1201-1207. https://doi.org/10.1007/s00299-011-1028-8
  58. Yamatani, H., Sato, Y., Masuda, Y., Kato, Y., Morita, R., Fukunaga, K., Nagamura, Y., Nishimura, M., Sakamoto, W., Tanaka, A., et al. (2013). NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. Plant J. 74, 652-662. https://doi.org/10.1111/tpj.12154
  59. Zhang, W., Liu, T., Ren, G., Hörtensteiner, S., Zhou, Y., Cahoon, E.B., and Zhang, C. (2014). Chlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing. Plant Physiol. 166, 70-79. https://doi.org/10.1104/pp.114.243709
  60. Zhou, C., Han, L., Pislariu, C., Nakashima, J., Fu, C., Jiang, Q., Quan, L., Blancaflor, E.B., Tang, Y., Bouton, J.H., et al. (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 157, 1483-1496. https://doi.org/10.1104/pp.111.185140

Cited by

  1. Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars vol.8, 2017, https://doi.org/10.3389/fpls.2017.01507
  2. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves vol.6, pp.1, 2016, https://doi.org/10.1038/srep23609
  3. Soybean NAC gene family: sequence analysis and expression under low nitrogen supply vol.61, pp.3, 2017, https://doi.org/10.1007/s10535-016-0693-4
  4. The “STAY-GREEN” trait and phytohormone signaling networks in plants under heat stress vol.36, pp.7, 2017, https://doi.org/10.1007/s00299-017-2119-y
  5. Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence vol.43, pp.3, 2016, https://doi.org/10.1016/j.jgg.2015.09.012
  6. GmSGR1, a stay-green gene in soybean (Glycine max L.), plays an important role in regulating early leaf-yellowing phenotype and plant productivity under nitrogen deprivation vol.38, pp.4, 2016, https://doi.org/10.1007/s11738-016-2105-y
  7. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription vol.35, pp.1, 2016, https://doi.org/10.1007/s00299-015-1876-8
  8. Overexpression of OsGATA12 regulates chlorophyll content, delays plant senescence and improves rice yield under high density planting vol.94, pp.1-2, 2017, https://doi.org/10.1007/s11103-017-0604-x
  9. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0168287
  10. Molecular breeding of a novel orange-brown tomato fruit with enhanced beta-carotene and chlorophyll accumulation vol.154, pp.1, 2017, https://doi.org/10.1186/s41065-016-0023-z
  11. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos vol.18, pp.9, 2017, https://doi.org/10.3390/ijms18091993
  12. Genetic dissection of early-season cold tolerance in sorghum: genome-wide association studies for seedling emergence and survival under field and controlled environment conditions vol.131, pp.3, 2018, https://doi.org/10.1007/s00122-017-3021-2
  13. New Urea Derivatives Are Effective Anti-senescence Compounds Acting Most Likely via a Cytokinin-Independent Mechanism vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01225
  14. ) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation pp.0028646X, 2019, https://doi.org/10.1111/nph.15362
  15. gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production pp.0028646X, 2018, https://doi.org/10.1111/nph.15353
  16. STAYGREEN (CsSGR) is a candidate for the anthracnose (Colletotrichum orbiculare) resistance locus cla in Gy14 cucumber vol.131, pp.7, 2018, https://doi.org/10.1007/s00122-018-3099-1
  17. Overexpression of the protein disulfide isomerase AtCYO1 in chloroplasts slows dark-induced senescence in Arabidopsis vol.18, pp.1, 2018, https://doi.org/10.1186/s12870-018-1294-5
  18. Large-Scale Investigation of Soybean Gene Functions by Overexpressing a Full-Length Soybean cDNA Library in Arabidopsis vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00631
  19. pp.09607412, 2019, https://doi.org/10.1111/tpj.14174
  20. Rice 7-Hydroxymethyl Chlorophyll a Reductase Is Involved in the Promotion of Chlorophyll Degradation and Modulates Cell Death Signaling vol.40, pp.10, 2015, https://doi.org/10.14348/molcells.2017.0127
  21. Regulation of ethylene-responsive SlWRKY s involved in color change during tomato fruit ripening vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-16851-y
  22. Transcriptome Profile of the Variegated Ficus microcarpa c.v. Milky Stripe Fig Leaf vol.20, pp.6, 2015, https://doi.org/10.3390/ijms20061338
  23. Differentiation of chromoplasts and other plastids in plants vol.38, pp.7, 2019, https://doi.org/10.1007/s00299-019-02420-2
  24. Comparative analysis of the plastid conversion, photochemical activity and chlorophyll degradation in developing embryos of green-seeded and yellow-seeded pea (Pisum sativum) cultivars vol.47, pp.5, 2020, https://doi.org/10.1071/fp19270
  25. Effects of 1-methylcyclopropene (1-MCP) on the expression of genes involved in the chlorophyll degradation pathway of apple fruit during storage vol.308, pp.None, 2015, https://doi.org/10.1016/j.foodchem.2019.125707
  26. NH 4 + Toxicity, Which Is Mainly Determined by the High NH 4 + /K + Ratio, Is Alleviated by CIPK23 in Arabidopsis vol.9, pp.4, 2015, https://doi.org/10.3390/plants9040501
  27. Deciphering the Role of Stay-Green Trait to Mitigate Terminal Heat Stress in Bread Wheat vol.10, pp.7, 2015, https://doi.org/10.3390/agronomy10071001
  28. Transcriptomic investigation of the basis of Corona and petal colour in Chinese narcissus vol.95, pp.5, 2015, https://doi.org/10.1080/14620316.2020.1713915
  29. Light-Mediated Regulation of Leaf Senescence vol.22, pp.7, 2021, https://doi.org/10.3390/ijms22073291
  30. Current Understanding of Leaf Senescence in Rice vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094515
  31. Comprehensive study of the genes involved in chlorophyll synthesis and degradation pathways in some monocot and dicot plant species vol.39, pp.7, 2015, https://doi.org/10.1080/07391102.2020.1748717
  32. Comparative Transcriptome-Based Mining of Senescence-Related MADS, NAC, and WRKY Transcription Factors in the Rapid-Senescence Line DLS-91 of Brassica rapa vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22116017
  33. Transcriptome analysis reveals the roles of chlorophyll a/b-binding proteins (CABs) and stay-green (SGR) in chlorophyll degradation during fruit development in kiwifruit vol.49, pp.2, 2015, https://doi.org/10.1080/01140671.2020.1810078
  34. Comprehensive insight into the chlorophyll degradation mechanism of postharvest broccoli heads under elevated O2 controlled atmosphere vol.288, pp.None, 2015, https://doi.org/10.1016/j.scienta.2021.110395
  35. STAY-GREEN and light-harvesting complex II chlorophyll a/b binding protein are involved in albinism of a novel albino tea germplasm ‘Huabai 1’ vol.293, pp.None, 2015, https://doi.org/10.1016/j.scienta.2021.110653