Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0039

The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation  

Sakuraba, Yasuhito (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
Park, So-Yon (Department of Plant Pathology, Physiology and Weed Science)
Paek, Nam-Chon (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
Abstract
Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a staygreen phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.
Keywords
abiotic stress; chlorophyll catabolic enzymes; chlorophyll degradation; STAYGREEN (SGR); SGR-LIKE (SGRL);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hirashima, M., Tanaka, R., and Tanaka, A. (2009). Light-independent cell death induced by accumulation of pheophorbide a in Arabidopsis thaliana. Plant Cell Physiol. 50, 719-729.   DOI   ScienceOn
2 Horie, Y., Ito, H., Kusaba, M., Tanaka, R., and Tanaka, A. (2009). Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J. Biol. Chem. 284, 17449-17456.   DOI   ScienceOn
3 Hortensteiner, S. (2009). Stay-green regulates chlorophyll and chlorophyll- binding protein degradation during senescence. Trends Plant Sci. 14, 155-162.   DOI   ScienceOn
4 Hortensteiner, S., and Krautler, B. (2011). Chlorophyll breakdown in higher plants. Biochim. Biophys. Acta 1807, 977-988.   DOI   ScienceOn
5 Huang, W., Chen, Q., Zhu, Y., Hu, F., Zhang, L., Ma, Z., He, Z., and Huang, J. (2013). Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light. Mol. Plant 6, 1673-1691   DOI   ScienceOn
6 Jakoby, M., Weisshaar, B., Droge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. (2002). bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106-111.   DOI   ScienceOn
7 Jiang, H., Li, M., Liang, N., Yan, H., Wei, Y., Xu, X., Liu, J., Xu, Z., Chen, F., and Wu, G. (2007). Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52, 197-209.   DOI   ScienceOn
8 Jiang, H., Chen, Y., Li, M., Xu, X., and Wu, G. (2011). Overexpression of SGR results in oxidative stress and lesion-mimic cell death in rice seedlings. J. Integr. Plant Biol. 253, 375-387.
9 Johnson-Flanagan, A.M., and Spencer, M.S. (1994). Ethylene production during development of mustard (Brassica juncea) and canola (Brassica napus) seed. Plant Physiol. 106, 601-606.   DOI
10 Kato, Y., and Sakamoto W. (2009). Protein quality control in chloroplast: a current model of D1 protein degradation in the photosystem II repair cycle. J. Biochem. 146, 463-469.   DOI   ScienceOn
11 Koornneef, M., Hanhart, C.J., Hilhorst, H.W., and Karssen, C.M. (1989). In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol. 90, 463-469.   DOI   ScienceOn
12 Kusaba, M., Ito, H., Morita, R., Iida, S., Sato, Y., Fujimoto, M., Kawasaki, S., Tanaka, R., Hirochika, H., Nishimura, M., et al. (2007). Rice NON-YELLOW COLORING1 is involved in lightharvesting complex II and grana degradation during leaf senescence. Plant Cell 19, 1362-1375.   DOI   ScienceOn
13 Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., Ou, S., Wu, H., Sun, X., Chu, J., et al. (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc. Natl. Acad. Sci. U.S.A. 111, 10013-10018.   DOI   ScienceOn
14 Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136.   DOI   ScienceOn
15 Luo, Z., Zhang, J., Li, J., Yang, C., Wang, T., Ouyang, B., Li, H., Giovannoni, J., and Ye, Z. (2013). A STAY-GREEN protein SlSGR1 regulates lycopene and $\beta$-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. New Phytol. 198, 442-452.   DOI   ScienceOn
16 Morita, R., Sato, Y., Masuda, Y., Nishimura, M., and Kusaba, M. (2009). Defect in non-yellow coloring 3, an alpha/beta hydrolase- fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J. 59, 940-952.   DOI   ScienceOn
17 Mach, J.M., Castillo, A.R., Hoogstraten, R., and Greenberg, J.T. (2001). The Arabidopsis-accelerated cell death gene ACD2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc. Natl. Acad. Sci. U.S.A. 98, 771-776.   DOI
18 Mecey, C., Hauck, P., Trapp, M., Pumplin, N., Plovanich, A., Yao, J., and He, S.Y. (2011). A critical role of STAYGREEN/Mendel's I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. Plant Physiol. 157, 1965-1974.   DOI
19 Meguro, M., Ito, H., Takabayashi, A., Tanaka, R., and Tanaka, A. (2011). Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell 23, 3442-3453.   DOI   ScienceOn
20 Nakagawara, E., Sakuraba, Y., Yamasato, A., Tanaka, R., and Tanaka, A. (2007). Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. Plant J. 49, 800-809   DOI   ScienceOn
21 Nakajima, S., Ito, H., Tanaka, R., and Tanaka, A. (2012). Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds. Plant Physiol. 160, 261-273.   DOI
22 Olinares, P.D., Kim, J., and van Wijk, K.J. (2011). The Clp protease system; a central component of the chloroplast protease network. Biochim. Biophys. Acta 1807, 999-1011.   DOI   ScienceOn
23 Ren, G., An, K., Liao, Y., Zhou, X., Cao, Y., Zhao, H., Ge, X., and Kuai, B. (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol. 144, 1429-1441.   DOI   ScienceOn
24 Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S.K., Jeong, S.W., Seo, H.S., Koh, H.J., et al. (2007). The senescence- induced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649-1664.   DOI   ScienceOn
25 Pruzinska, A., Tanner, G., Anders, I., Roca, M., and Hortensteiner, S. (2003). Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc. Natl. Acad. Sci. U.S.A. 100, 15259-15264.   DOI   ScienceOn
26 Pruzinskz, A., Anders, I., Aubry, S., Schenk, N., Tapernoux-Luthi, E., Muller, T., Krautler, B., and Hortensteiner, S. (2007). In vivo participation of red chlorophyll catabolite reductase in chlorophyll breakdown. Plant Cell 19, 369-387.   DOI   ScienceOn
27 Rong, H., Tang, Y., Zhang, H., Wu, P., Chen, Y., Li, M., Wu, G., and Jiang, H. (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J. Plant Physiol. 170, 1367-1373.   DOI   ScienceOn
28 Sakuraba, Y., Schelbert, S., Park, S.Y., Han, S.H., Lee, B.D., Andres, C.B., Kessler, F., Hortensteiner, S., and Paek, N.C. (2012). STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24, 507-518.   DOI   ScienceOn
29 Sakuraba, Y., Kim, Y.S., Yoo, S.C., Hörtensteiner, S., and Paek, N.C. (2013). 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence. Biochem. Biophys. Res. Commun. 430, 32-37.   DOI   ScienceOn
30 Sakuraba, Y., Lee, S.H., Kim, Y.S., Park, O.K., Hörtensteiner, S., and Paek, N.C. (2014a). Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing. J. Exp. Bot. 65, 3915-3925.   DOI   ScienceOn
31 Sakuraba, Y., Park, S.Y., Kim, Y.S., Wang, S.H., Yoo, S.C., Hörtensteiner, S., and Paek, N.C. (2014b). Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol. Plant 7, 1288-1302.   DOI   ScienceOn
32 Sakuraba, Y., Kim, D., Kim, Y.S., Hortensteiner, S., and Paek, N.C. (2014c). Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett. 588, 3830-3837.   DOI   ScienceOn
33 Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., and Choi, G. (2014d). Phytochrome-interacting transcription factors PIF4 and PIF5 induced leaf senescence in Arabidopsis. Nat. Commun. 5, 4636.
34 Sato, Y., Morita, R., Katsuma, S., Nishimura, M., Tanaka, A., and Kusaba, M. (2009). Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. Plant J. 57, 120-131.   DOI   ScienceOn
35 Sattler, S.E., Gilliland, L.U., Magallanes-Lundback, M., Pollard, M., and DellaPenna, D. (2004). Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16, 1419-1432.   DOI   ScienceOn
36 Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., and Hortensteiner, S. (2009). Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21, 767-785.   DOI   ScienceOn
37 Wang, Q., Sullivan, R.W., Kight, A., Henry, R.L., Huang, J., Jones, A.M., and Korth, K.L. (2004). Deletion of the chloroplastlocalized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol. 136, 3594-3604.   DOI   ScienceOn
38 Tanaka, R., Hirashima, M., Satoh, S., and Tanaka, A. (2003). The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of the pheophorbide a oxygenase activity does not lead to the "stay-green" phenotype in Arabidopsis. Plant Cell Physiol. 44, 1266-1274.   DOI   ScienceOn
39 Tang, Y., Li, M., Chen, Y., Wu, P., Wu, G., and Jiang, H. (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J. Plant Physiol. 168, 1952-1959.   DOI   ScienceOn
40 Thomas, H. and Howarth, C.J. (2000). Five ways to stay green. J. Exp. Bot. 51, 329-337.   DOI   ScienceOn
41 Wei, Q., Guo, Y., and Kuai, B. (2011). Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Rep. 30, 1201-1207.   DOI
42 Yamatani, H., Sato, Y., Masuda, Y., Kato, Y., Morita, R., Fukunaga, K., Nagamura, Y., Nishimura, M., Sakamoto, W., Tanaka, A., et al. (2013). NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. Plant J. 74, 652-662.   DOI   ScienceOn
43 Zhang, W., Liu, T., Ren, G., Hörtensteiner, S., Zhou, Y., Cahoon, E.B., and Zhang, C. (2014). Chlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing. Plant Physiol. 166, 70-79.   DOI   ScienceOn
44 Chao, W.S., Liu, V., Thomson, W.W., Platt, K., and Walling, L.L. (1995). The impact of chlorophyll-retention mutations, d1d2 and cyt-G1, during embryogeny in soybean. Plant Physiol. 107, 253-262.   DOI
45 Zhou, C., Han, L., Pislariu, C., Nakashima, J., Fu, C., Jiang, Q., Quan, L., Blancaflor, E.B., Tang, Y., Bouton, J.H., et al. (2011). From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiol. 157, 1483-1496.   DOI   ScienceOn
46 Armstead, I., Donnison, I., Aubry, S., Harper, J., Hörtensteiner, S., James, C., Mani, J., Moffet, M., Ougham, H., Roberts, L., et al. (2007). Cross-species identification of Mendel's/locus. Science 315, 73.   DOI   ScienceOn
47 Barry, C.S., McQuinn, R.P., Chung, M.Y., Besuden, A., and Giovannoni, J.J. (2008). Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 147, 179-187.   DOI   ScienceOn
48 Biswal, B. (1995). Carotenoid catabolism during leaf senescence and its control by light. J. Photochem. Photobiol. B, Biol. 30, 3-13.   DOI   ScienceOn
49 Cha, K.W., Lee, Y.J., Koh, H.J., Lee, B.M., Nam Y.M., and Paek, N.C. (2002). Isolation, characterization, and mapping of the stay green mutant in rice. Theor. Appl. Genet. 104, 526-532.   DOI
50 Clerkx, E.J., Vries, H.B., Ruys, G.J., Groot, S.P., and Koornneef, M. (2003). Characterization of green seed, an enhancer of abi3-1 in Arabidopsis that affects seed longevity. Plant Physiol. 132, 1077-1084.   DOI   ScienceOn
51 Delmas, F., Sankaranarayanan, S., Deb, S., Widdup, E., Bournonville, C., Bollier, N., Northey, J.G.B., McCourt, P., and Samuel, M.A. (2013). ABI3 controls embryo degreening through Mendel's I locus. Proc. Natl. Acad. Sci. USA 110, e3888-e3894.   DOI   ScienceOn
52 Fang, C., Li, C., Li, W., Wang, Z., Zhou, Z., Shen, Y., Wu, M., Wu, Y., Li, G., Kong, L.A., et al. (2014). Concerted evolution of D1 and D2 to regulate chlorophyll degradation in soybean. Plant J. 77, 700-712.   DOI   ScienceOn
53 Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., et al. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50, 2123-2132.   DOI   ScienceOn
54 Forsberg, J., Strom, J., Kieselbach, H., Larsson, K., Alexciev, A., Engstrom, A., and Akerlund, H.E. (2005). Protease activities in the chloroplast capable of cleaving an LHCII N-terminal peptide. Physiol. Plant. 123, 21-29.   DOI   ScienceOn
55 Fraser, P.D., Truesdale, M.R., Bird, C.R., Schuch, W., and Bramley, P.M. (1994). Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 105, 405-413.   DOI
56 Fraser, P.D., and Bramley, P.M. (2004). The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228-265   DOI   ScienceOn
57 Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F., and Goodman, H.M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251-1261.   DOI   ScienceOn
58 Gray, J., Close, P.S., Briggs, S.P., and Johal, G.S. (1997). A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89, 25-31.   DOI   ScienceOn
59 Gray, J., Janick-Buckner, D., Buckner, B., Close, P.S., and Johal, G.S. (2002). Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol. 130, 1894-1907.   DOI   ScienceOn
60 Guiamet, J.J., Schwartz, E., Pichersky, E., and Nooden, L.D. (1991). Characterization of cytoplasmic and nuclear mutations affecting chlorophyll and chlorophyll-binding proteins during senescence in soybean. Plant Physiol. 96, 227-231.   DOI   ScienceOn