• Title/Summary/Keyword: RoeM scheme

Search Result 13, Processing Time 0.024 seconds

Computations of Compressible Two-phase Flow using Accurate and Efficient Numerical Schemes

  • Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.13-17
    • /
    • 2006
  • RoeM and AUSMPW+ schemes are two of the most accurate and efficient schemes which are recently developed for the analysis of single phase gas dynamics. In this paper, we developed two-phase versions of these schemes for the analysis of gas-liquid large density ratio two-phase flow. We adopt homogeneous equilibrium model (HEM) using mass fraction to describe different two phases. In the Eulerian-Eulerian framework, HEM assumes dynamic and thermal equilibrium of the two phases in the same computational mesh. From the mixture equation of state (EOS), we derived new shock-discontinuity sensing term (SDST), which is commonly used in RoeM and AUSMPW+ for the stable numerical flux calculation. The proposed two-phase versions of RoeM and AUSMPW+ schemes are applied on several air-water two-phase test problems. In spite of the large discrepancy of material properties such as density, enthalpy, and speed of sound, the numerical results show that both schemes provide very satisfactory solutions.

  • PDF

충격파 불안정성을 제거한 Roe 수치기법 (A Shock Stable Roe Scheme)

  • Kim Sung-soo;Kim Chongam;Rho Oh-Hyun;Hong Seung Kyu
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.43-53
    • /
    • 2001
  • 본 논문은 충격파 불안정성이 나타나지 않는 충격파 안정적인 수치기법의 개발을 목표로 하고 있다. Roe의 수치기법은 유동의 수치계산에 있어 높은 정확도를 보장하지만 carbuncle 현상과 같은 충격파 불안정성이 나타나는 것으로 알려져 있다. Roe의 수치기법과 HLLE 수치기법의 수치점성을 비교하여 충격파 불안정성의 원인을 살펴보았으며, Roe의 수치기법에 나타나는 반감쇠항에 마하수의 함수인 조절함수 f와 g를 도입하여 충격파 안정성을 획득하였다. 본 논문에서 제안된 수치기법을 다양한 유동문제에 적용하여 수치기법의 충격파 안정성과 정확성을 검증하였다

  • PDF

A numerical investigation on the oblique shock wave/vortex interaction (경사충격파와 와류간의 상호작용에 관한 수치적 연구)

  • Moon, Seong-Mok;Kim, Chong-Am;Rho, Oh-Hyun;Hong, Seung-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.20-28
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic mode1. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach arc used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vortex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the k-w SST turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

IMMIGRATION FROM COMPRESSIBLE TO PRECONDITIONING CODE WITH VALIDATIONS (압축성 코드에서 예조건화 코드로의 이전 및 검증)

  • Han S.H.;Kim M.H.;Choi J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.145-150
    • /
    • 2005
  • Generally, Compressible Navier-Stokes codes are used to solve high mach number flows. But, Most of high mach number flows embrace low mach number flows. This phenomenon results in low convergence rate and non-physical solution in CFD analysis. So Many researchers developed preconditioning technique to solve these problems. This Study presents how to modify previous compressible N-S computer code with little changes of structure into preconditioned compressible N-S code applying Roe's Approximate Riemann Solver. And this study show developed preconditioning code is very well operated at all mach number flows.

  • PDF

Numerical study on the oblique shock wave/vortex interaction (경사충격파와 와류 상호작용에 대한 수치적 연구)

  • Mun, Seong-Mok;Kim, Jong-Am;No, O-Hyeon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.240-246
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic model. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach are used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vertex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the ${\kappa}-{\omega}SST$ turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

  • PDF

Supersonic Base Flow by Using High Order Schemes

  • Shin, Edward Jae-Ryul;Won, Su-Hee;Cho, Doek-Rae;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.723-728
    • /
    • 2008
  • We performed numerical analysis of base drag phenomenon, when a projectile with backward step flies into atmosphere at supersonic speed. We compared with other researchers. From our previous studies that were 2-dimensional simulation, we found out from sophisticated simulations that need dense mesh points to compare base pressure and velocity profile after from base with experimental data. Therefore, we focus on high order spatial disceretization over 3rd order with TVD such as MUSCL TVD 3rd, 5th, and WENO 5th order, and Limiters such as minmod, Triad. Moreover, we enforce to flux averaging schemes such as Roe, RoeM, HLLE, AUSMDV. In present, one dimensional result of Euler tests, there are Sod, Lax, Shu-Osher and interacting blast wave problems. AUSMDV as a flux averaging scheme with MUSCL TVD 5th order as spatial resolution is good agreement with exact solutions than other combinations. We are carrying out the same approaches into 3-dimensional base flow only candidate flux schemes that are Roe, AUSMDV. Additionally, turbulence models are used in 3-dimensional flow, one is Menter s SST DES model and another is Sparlat-Allmaras DES/DDES model in Navier-Stokes equations.

  • PDF

PERFORMANCE OF TWO DIFFERENT HIGH-ACCURACY UPWIND SCHEMES IN INVISCID COMPRESSIBLE FLOW FIELDS

  • Hosseini R;Rahimian M.H;Mirzaee M
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.99-106
    • /
    • 2005
  • Performance of first, second and third order accurate methods for calculation of in viscid fluxes in fluid flow governing equations are investigated here. For the purpose, an upwind method based on Roe's scheme is used to solve 2-dimensional Euler equations. To increase the accuracy of the method two different schemes are applied. The first one is a second and third order upwind-based algorithm with the MUSCL extrapolation Van Leer (1979), based on primitive variables. The other one is an upwind-based algorithm with the Chakravarthy extrapolation to the fluxes of mass, momentum and energy. The results show that the thickness of shock layer in the third order accuracy is less than its value in second order. Moreover, applying limiter eliminates the oscillations near the shock while increases the thickness of shock layer especially in MUSCL method using Van Albada limiter.

A Flowfield Analysis Around an Airfoil by Using the Euler Equations (Euler 방정식을 사용한 익형 주위에서의 유동장 해석)

  • Kim M. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.186-191
    • /
    • 1999
  • An Euler solver is developed to predict accurate aerodynamic data such as lift coefficient, drag coefficient, and moment coefficient. The conservation law form of the compressible Euler equations are used in the generalized curvilinear coordinates system. The Euler solver uses a finite volume method and the second order Roe's flux difference splitting scheme with min-mod flux limiter to calculate the fluxes accurately. An implicit scheme which includes the boundary conditions is implemented to accelerate the convergence rate. The multi-block grid is integrated into the flow solver for complex geometry. The flowfields are analyzed around NACA 0012 airfoil in the cases of $M_{\infty}=0.75,\;\alpha=2.0\;and\;M_{\infty}=0.80,\;\alpha=1.25$. The numerical results are compared with other numerical results from the literature. The final goal of this research is to prepare a robust and an efficient Navier-Stokes solver eventually.

  • PDF

Efficiency Enhancement of CFDS Code (CFDS 코드의 효율성 개선)

  • Kim J. G.;Lee J.;Kim C.;Hong S. K.;Lee K. S.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.123-127
    • /
    • 2005
  • The numerical analyses of the complicated flows are widely attempted in these days. Because of the enormous demanding memory and calculation time, parallel processing is used for these problems. In order to obtain calculation efficiency, it is important to choose proper domain decomposition technique and numerical algorithm. In this research we enhanced the efficiency of the CFDS code developed by ADD, using parallel computation and newly developed numerical algorithms. For the huge amount of data transfer between blocks non-blocking method is used, and newly developed data transfer algorithm is used for non-aligned block interface. Recently developed RoeM scheme is adpoted as a spatial difference method, and AF-ADI and LU-SGS methods are used as a time integration method to enhance the convergence of the code. Analyses of the flows around the ONERA M6 wing and the high angle of attack missile configuration are performed to show the efficiency improvement.

  • PDF

Implicit Incompressible flow solver on Unstructured Hybrid grids (비구조 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim J.;Kim Y.M;Maeng J.S
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.48-54
    • /
    • 1998
  • Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.

  • PDF