• Title/Summary/Keyword: Robust stability

Search Result 1,148, Processing Time 0.028 seconds

Decentralized Nonlinear Voltage Control of Multi-machine Power Systems with Nonlinear Interconnections

  • Lee, Jae-Won;Yoon, Tae-Woong;Im, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.448-453
    • /
    • 2004
  • In this paper, an adaptive robust decentralized excitation control scheme is proposed to enhance the transient stability of a multi-machine power system. We employ a state model where the terminal voltage of each generator is regarded as part of the state. Using this state model, the proposed controller is obtained in two steps: firstly, a robust controller is designed for the nominal system with no interconnection terms; then an adaptive compensator is proposed to deal with those interconnection terms, whose upper bounds are estimated. The resulting adaptive scheme guarantees the practical stability of the closed-loop, and also the uniform ultimate boundedness in the presence of disturbances.

  • PDF

Robust control system design for a flexible arm by a two-degree-of-freedom compensator

  • Shimomoto, Y.;Kobayashi, T.;Miyaura, S.;Ishimatsu, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.105-108
    • /
    • 1993
  • This paper is concerned with a two-degree-offreedom control system design for a flexible arm, a two-degree-of-frecdom control system can achieve a robust stability specification and a control performance specification independently. By this property we improve the control performance with maintaining the same robust stability level as that of the onc-dcgree-of-freedom control system. At First we design a two-degree-of-fteedom control system which includes a feedforward controller and a feedback controller. The feedforward controller can be given by specifying a transfer function of a dcsired closed-loop model. We obtain a feedback controller by solving a mixed sensitivity problem. Several numerical results show that two-degree-of-freedom control systems acheive a better control performance than that of one-degree-of-freedom control systems.

  • PDF

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

A Robust Attitude Controller Design Using Lyapunov Redesign Technique for Spacecraft (Lyapunov 재설계 기법을 이용한 우주비행체 강인 자세제어기 설계)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.313-318
    • /
    • 2002
  • A robust attitude controller using Lyapunov redesign technique for spacecraft is proposed. In this controller, qua- ternion feedback is considered to have the attitude maneuver capability very close to the eigen-axis rotation. The controller consists of three parts: the nominal feedback parts which is a PD-type controller for the nominal system without uncertainties, the additional term compensating for the gyroscopic motion, and the third part for ensuring robustness to uncertainties. Lyapunov stability criteria is applied to stability analysis. The performance of the proposed controller is demonstrated via computer simulation.

Robust Adaptive Sliding Mode Controller for PMSM Servo Drives System (강인 적응성 슬라이딩을 이용한 PMSM 서보드라이브 시스템 제어기)

  • Park, Ki-Kwang;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1640_1641
    • /
    • 2009
  • Dynamic friction and force ripple are the most predominant factors that affect the positioning accuracy of permanent magnet synchronous motor(PMSM) servo drives system, and it is desirable to compensate them in finite time with a continuous control law. In this paper, based on LuGre dynamic friction model, a robust adaptive skidding mode controller is proposed to compensate the nonlinear effect of friction and force ripple. The controller scheme consists of a PD component and a robust adaptive sliding mode controller for estimating the unknown system parameter. Using Lyapunov stability theorem, asymptotic stability analysis and position tracking performance are guaranteed. Simulation results well verify the feasibility and the effectiveness of the proposed scheme for high0precision motion trajectory tracking.

  • PDF

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.

Coprime factor reduction of plant in $H{\infty}$ mixed sensitivity problem ($H{\infty}$ 혼합감도문제에서 플랜트의 소인수요소줄임)

  • 음태호;오도창;박홍배;김수중
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.20-27
    • /
    • 1996
  • In this paper, we propose a coprime factor model reduction method to get a reduced order controller in $H^{\infty}$ mixed sensitivity problem with frequency weighting functions. for this purpose, the given $H^{\infty}$ mixed sensitivity problem is transformed into robust stabilization problem with coprime factor uncertainty of given plant. This method is to define frequency weighted coprime factors of plant in CSD (chain scattering description) form and reduce the coprime factors using weighted balanced truncation. then a controller is designed to the reduced order coprime factors using J-lossless coprime factorization method. Using this approach, the robust stability condition is derived and good performance is preserved in closed loop system with the given plant and the reduced order controller. Also the order of reduced controller for guaranteeing the robust stability can be determined before designing the reduced controller. The proposed method behaves well in both stable and unstable plant.

  • PDF

Robust Deterministic Control of Singularly Perturbed Uncertain Systems (특이섭동 불확실시스템의 견실확정제어)

  • 강철구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1542-1550
    • /
    • 1994
  • For a class of singularly perturbed uncertain system, an output feedback control law is designed. The controller structure is designed based on the uncertain reduced-order system, and the controller parameters are determined by information on the reduced-order and full-order systems. It has been shown that the reduces-order system with the designed controller possesses a stability property(specifically, a global uniform attractivity). Furthermore, the stability property of this control scheme is robust with respect to singular perturbation ; i.e., the full-order system, subject to the same controller, possesses the global uniform attractivity, provided the singular perturbation parameter $\mu<\mu^{*}$, where a threshold value $\mu^{*}$ can be computed from the information available on the full-order system.

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF

A Design on Robust Model Following PD Control System Using Genetic Algorithm (유전 알고리즘을 이용한 강인한 모델 추종형 제어 시스템의 설계)

  • Cho, K.Y.;Hwang, H.J.;Kim, D.W.;Seo, J.I.;Lee, K.H.;Park, J.H.;Hwang, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.119-121
    • /
    • 1997
  • This paper suggests a design method of the robust model following PD control system using genetic algorithm. This PD control system is designed by applying genetic algorithm with reference model to the optimal determination of proportional and derivative gains that are given by PD servo controller. These proportional and derivative gains are optimized simultaneously in the search domain guaranteeing the robust stability of closed-loop system satisfying different stability margins. The effectiveness of this PD control system is verified by computer simulation.

  • PDF