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1. INTRODUCTION 

For large-scale systems which are composed of 

interconnections of many lower-dimensional subsystems, 

decentralized control is preferable since it can alleviate the 

computational burden, avoid communication between 

different subsystems, and make the control more feasible and 

simpler. A power system is such a large-scale system where 

generators are interconnected through transmission lines. 

Decentralized control is therefore considered for power 

systems. Electric power systems recently become large and 

complex due to increasing power demand; hence it is 

important to improve the transient stability. Recently, 

nonlinear control theories have been employed to take into 

account the nonlinearities of the controlled power systems 

[7-12]. 

One of the main objectives of the excitation control is to 

regulate the generator terminal voltage in the presence of 

various faults as well as under normal operating conditions 

[1-3, 6]. In recent years, considerable efforts have been made 

to enhance power system stability, but less attention has been 

paid to the problem of voltage control design [1]. This paper 

seeks to design an adaptive robust controller, which can lead 

to voltage regulation as well as stability enhancement despite 

the presence of nonlinearities and nonlinear interconnections. 

In this paper, we first employ the DFL technique used in 

[4-5, 10] to cancel most of the nonlinearities of the power 

system, and then consider a state model where the terminal 

voltage of each generator is regarded as part of the state. 

Using this state model, the proposed controller is obtained in 

two steps: firstly, a robust controller is designed for the 

nominal system with no interconnection terms; then an 

adaptive compensator is proposed to deal with those 

interconnection terms, whose upper bounds are estimated. The 

resulting adaptive scheme guarantees the practical stability of 

the closed-loop, and also the uniform ultimate boundedness in 

the presence of disturbances. 

The proposed controller is applied to a three-machine 

example system. In order to illustrate closed-loop performance, 

we consider a symmetrical three-phase short-circuit fault. The 

simulation results show that the proposed nonlinear voltage 

controller can achieve both voltage regulation and system 

stability enhancement. 

2. DYNAMIC MODEL

In this section, we consider a power system consisting of n

synchronous machines. Following [3, 6], a dynamical model 

of the i-th machine with excitation control is given below 

(Note that the system has already been reduced into a network 

retaining only generator nodes [2]). 

2.1 Mechanical equations
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where

i power angle of the i-th generator, in rad 

i relative speed of the i-th generator, in rad/sec 

miP Mechanical input power, in p.u. 

eiP electrical power, in p.u. 

0 Synchronous machine speed, in rad/sec 

iD per unit damper constant 

iH inertia constant, in sec 

id persistent disturbance, in p.u. 

(subscript i means the ith generator.) 

2.2 Generator electrical dynamics 

1
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where

qiE transient EMF in the quadrature axis, in p.u. 

fiE equivalent EMF in the excitation coil, in p.u. 

diI direct axis current, in p.u. 
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doiT direct axis transient short-circuit time constant, 

in sec 

dix direct axis reactance, in p.u. 

dix direct axis transient reactance, in p.u. 

2.3 Electrical equations 
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where

qiE EMF in the quadrature axis, in p.u. 

adix mutual reactance between the excitation coil 

and the stator coil, in p.u. 

fiI excitation current, in p.u. 

cik gain of the excitation amplifier, in p.u. 

fiu input of the SCR amplifier, in p.u. 

eiQ reactive power, in p.u. 

ijB i-th row and j-th column element of nodal 

susceptance matrix at the internal nodes after 

eliminating all physical buses, in p.u. 

For this nonlinear model, by employing direct feedback 

linearization compensation law in [7], we obtain 
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The DFL compensated system (5)-(8) is valid except when 

0qiI , which does not happen under normal operating region. 

We thus assume that the model (5)-(8) is valid all the time. 

Note also that 
qiE ,

diI  and 
qiI  can be calculated from 

eiP ,

eiQ , and fiI  which are available, and thus 
fiu  can be 

implemented using 
fiv .

3. DECENTRALIZED NONLINEAR VOLTAGE 

CONTROLLER DESIGN

In sections 3.1-3.3 below, we assume that there is no 

disturbance, i.e. 0id .

3.1 Voltage state equation 

For the power system (5) resulting from the DFL 

compensator (8), consider for example a decentralized control 

law of the following form 

fi i i pi ei vi tiv k k P k V                      (9) 

for some constants ik , pik , and vik . To facilitate designing 

such a control, we write a state equation containing i , eiP ,

and tiV . To this end, consider 
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Defining ,,
T

i i ei tiX P V  as the new state vector, the 

power system model (5) can be written as follows: 

i i i i fi iX A X B v                            (14) 

where
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For this system, we set the control input fiv  as 

1 2fi fi fiv v v                                 (15) 

and design 1fiv  and 2fiv  in Section 3.2 and Section 3.3, 

respectively. 

3.2 Robust controller design 

In this section, we design a robust controller for 1fiv

assuming that 0i , i.e. 

1i i i i fiX A X B v                               (16) 

The procedure parallels closely that in [14, 4]. 

In view of equations (11)-(12), suppose 

1min 1 1maxi i if f f , 2 min 2 2 maxi i if f f
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Note that the upper and lower bounds above are obtained in 

view of equations (11) and (12), and the range of variables 

involved under normal operating circumstances. Using these 

bounds for 1if  and 2if , the model (16) is rewritten as 

follows:
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and 1if  and 2if  are the average values of 1if  and 2if .

Using the plant (17), we now determine the control 1fiv  as 

follows:
1

1

T

fi i i i iv R B P X                              (18) 

where iR  and iP  are positive definite matrices such that 
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with iQ  being a given positive definite matrix. The control 

(18) stabilizes the system (16) or (17) as shown below. 

Theorem 1 [14]: Consider the power system in equation (16) 

or (17) with no interconnection terms, and the control input 

1fiv  in (18). Then the closed-loop is asymptotically stable (in 

the absence of interconnections and disturbances). 

Proof : Consider the following Lyapunov function candidate 

0

T
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Then the time derivative of the function (20) is obtained as 
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It then follows from the Riccati equation (19) that 

0

T
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This completes the proof. 

3.3 Adaptive controller design for interconnection terms 

In this section, we consider again the interconnection term 

i , which is ignored in section 3.2. Firstly, using (7) and (13), 

write i  as 

'

0 1i i d i iBT

Then the power system (14) is obtained as 
' '

0 1 1i i i i fi d i i i i i fi iX A X B v T A X B v       (23) 

where
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Note that i i iX F X  is a stable system as shown in section 

3.2.

We now consider an upper bound for the absolute value of 
'

1i  given in (7). Making the same assumptions as in [7], we 

obtain
' * * *
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i  is a vector, which is assumed to be unknown in this 

paper. The design of the proposed adaptive controller for the 

power system (14) or (23) is then completed by determining 

2fiv  to counteract the effect of the interconnection term '

1i

as follows: 
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where i  is an arbitrary positive constant and the vector ˆ
i

is the estimate of the unknown parameter vector *

i , which is 

updated by the following adaptation law: 

ˆ
i

1ˆ
2

i i i i i i                         (26) 

where i  is a positive constant, and i  is a positive 

definite matrix. 

Theorem 2: Consider the power system (14) or (23) with the 

interconnection '

1i , and the adaptive control law (15), (18), 

(25) and (26). Then the closed-loop system is practically 

stable (in the absence of disturbances). 

Proof:

Consider the following Lyapunov function candidate 
1, T T

i i i i i i i i iV X X P X                      (27) 

where i  is the parameter estimation error defined as 

*ˆ
i i i

Note that the adaptation law in (26) can be written in terms of 

i  as follows: 
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The derivative of iV  is then obtained as 

' 1

2 1

2 2
*

, 2 2 2T T T T

i i i i i i i i i i i i i i i i

T

i i i i i i i i

V X X Q X X PBu X PB

X Q X

 (29) 

450



Hence we have 
2 2

*, T

i i i i i i i i i iV X X Q X        (30) 

This implies that ,i iX  is uniformly bounded with an 

ultimate bound, which can be made arbitrarily small as can be 

i  and i . In other words, the closed-loop system is 

practically stable. 

3.4 Effect of disturbance 

Finally we consider the case where there is a disturbance; 

then the system model (14) becomes  

i i i i fi i iX A X B v d                         (31) 

where 0 0
T

i id d . To see the effects of this 

disturbance, consider the positive definite function (27). Then 
2 22 *
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where i  is any positive number, and thus can be made 

smaller than min ( )iQ . This inequality implies that the 

closed-loop is uniformly ultimately bounded even in the 

presence of the disturbance. 

4. SIMULATION RESULTS 

For simulations, a three-machine power system is 

considered as shown in Figure 1. The system parameters are 

given in Table 1. 

122x

122x

13x 23x

Fig. 1 Three-machine example system 

Table 1 Generator parameters 

 Generator #1 Generator #2 

dx (p.u.) 1.863 2.36 

'

dx (p.u.) 0.657 0.719 

Tx (p.u.) 0.129 0.127 

adx (p.u.) 1.712 1.712 

'

0dT (sec) 6.9 7.96 

H(sec) 4.0 5.1 

D (p.u.) 5.0 3.0 

ck 1.0 1.0 

For more realistic simulations, the physical limit of the 

excitation voltage and the saturation effect of the synchronous 

generator are also considered as follows: 

1 1 6.0 . .c fk v p u , 2 2 6.0 . .c fk v p u

When the saturation effect of the synchronous generator is 

taken into account, equation (3) can be rewritten as: 

' ' '
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1
qi fi di di di fi qi
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T

where 
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in
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[15]. The saturation parameters are 

assumed to be 

1 2 0.95a a , 1 2 0.051b b , 1 2 8.727n n

When finding the uncertainty bounds of 1if  and 2if , the 

change of network structure is also taken into account; 

consider the bound of iiB  as follows: 

01ii i iiB B

where 0iiB  is the value of iiB  at a certain steady operating 

condition, and i  is a proportional parameter. Also the 

following operating regions are assumed. 

30% 30%i , 0.2 1.0qiI , 0.1 1.2eiP

0.2 1.0eiQ , '0.8 1.3qiE , 5 45qti

0.8 1.1tiV ( fiu  usually reaches limit when 0.8tiV )

Then the bounds of 1if  and 2if can be found as follows: 

113.526 0.259f , 120.266 3.794f

212.832 0.233f , 220.241 3.670f

The adaptation parameters are chosen to be 

1 2 2I 1 2 1 1 2 0.01

In order to compare the proposed controller with a 

DFL-based nonlinear controller, we design an LQ optimal 

control for the power system (5) as follows: 

1 1 1 122.4 12.8 82.5f ev P

2 2 2 222.4 14.2 82.6f ev P

In the simulations below, the proposed controller and the 

above DFL-based optimal controller are compared for the 

following two cases: 

Case 1. Symmetrical three-phase short circuit: 

A symmetrical three phase short circuit fault occurs on one of 

the transmission lines between Generator #1 and Generator #2 

at t = 0.1, the fault is removed by opening the breaker of the 

faulted line at t = 0.25 (postfault state), and then the 

transmission lines are restored at t = 1 (prefault state). 

Case 2. Permanent serious fault: 

A symmetrical three phase short circuit fault occurs on one of 

the transmission lines between Generator #1 and Generator #2 

at t = 0.1, the fault is removed by opening the breaker of the 

faulted line at t = 0.25 (postfault state), and the transmission 

lines are not restored. 

Figures 2-5 present simulation results for case 1, and figures 
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6-9 present simulation results for case 2. In each figure, the 

solid and dashdot lines concern the proposed and DFL-based 

controllers, respectively. 
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(Case 2.) 

As illustrated in all the figures, the proposed controller leads 

to satisfactory performance, outperforming the DFL-based 
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nonlinear controller. 

5. CONCLUSION 

This paper proposes a decentralized nonlinear voltage 

controller for multi-machine power systems. In order to 

achieve voltage regulation as well as stability enhancement, 

we first consider a state model where the terminal voltage of 

each generator is regarded as part of the state. Using the 

resulting model, a robust controller is designed assuming that 

there is no interconnection between generators; then another 

control is designed and added to deal with the interconnection 

via an adaptive technique. 

The proposed control system is shown to be practically 

stable in the absence of disturbances, and to be uniformly 

ultimately bounded even in the presence of disturbances. The 

effectiveness of the proposed scheme is demonstrated through 

simulations. However some variables are assumed to be 

bounded during the design phase, and this problem needs to be 

solved for more rigorous proof of stability analysis. 
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