• Title/Summary/Keyword: Robust current control

Search Result 301, Processing Time 0.026 seconds

$H_\infty$ Control Apprach to a Magnetic Levitation System with Two Poles on $j_\omega$-Axis

  • Qi, Run-De;Tsuji, Teruo;Oguro, Ryuichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.339-344
    • /
    • 1993
  • An H$_{\infty}$ control system design for a magnetic levitation system is presented. In the control system design, we consider the influence of both disturbances and uncertainties in the model. The main disturbances stem from the position sensors.The uncertainties are divided into electromagnetic and mechanical ones: the former are due to the gain change in the current amplifier, the influence of leakage flux and modelling error in the magnetic circuit and the latter are due to the changes of the mass and the moments of inertia of the vehicle. Therefore, the designed controller is indispensable to guarantee the robustness of this system for both stability and performance. The controller design is based on the standard H$_{\infty}$ optimal control problem. As the novel features in this paper :(1) there are two poles on j.omega.-axis in the control model;(2) an integrator is included in the controller so that equivalently there are three poles on j.omega.-axis in the model. Finally, several experiments and simulations are carried out to verify the high performance and robustness of the designed control system.m.

  • PDF

Variable Gain Current Controller Considering Inductance Variations after the Connection of DFIG Stator to the Grid (DFIG 고정자의 계통연계시 인덕턴스 변동을 고려한 가변이득 전류제어기)

  • Shin, Soo-Cheol;Yu, Jae-Sung;Hong, Jung-Ki;Suh, In-Young;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.293-298
    • /
    • 2009
  • This paper presents a variable gain current control algorithm for the stabilized grid connection between the grid and a doubly fed induction(DFIG) as a wind power generator. The performance of a RSC current controller depends highly on accurate machine parameters, and especially requires a fast and robust response regardless of the disturbances such as voltage sag. However, parameter variations of a DFIG occur at the point of grid connection, which affects the current controller gains based on DFIG parameters after a DFIG is connected to the grid. Thus, performance degrades when actual machine parameters depart from values used in the control system. In the proposed algorithm, current controller gains of the rotor side converter(RSC) are changed after a DFIG is connected to the grid. The simulation results and experimental results for a 750kW are shown to illustrate the feasibility of the proposed algorithm.

Energy-efficient C-dump Converter for SRM Drives with Power Factor correction (역률개선과 고효율을 위한 스위치드 릴럭터스 전동기의 구동 시스템)

  • Yoon Yong-Ho;Lee Tae-Won;Song Sang-Hoon;Kim Yuen-Chung;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.214-218
    • /
    • 2004
  • Switched Reluctance Motor (SRM) offers the advantages of simple and robust motor construction, high speeds and high efficiencies over a wide operating range of torque and speed, excellent controllability. However, SRM has the disadvantages of high current harmonics, and low power factor because of a capacitor filter is inserted in the power converter and inductance of SRM is high, it has pulse waveform of current. This paper deals with an energy efficient converter fed SRM system with the reduced harmonics and improved power factor and with higher efficiency. The validity of the proposed scheme is verified via experiment. We are implemented the proposed control system using 80C196KC micro-controller.

  • PDF

The Study for Power Factor Correction and High Efficiency of Switched Reluctance Motor Drive System (스위치드 릴럭턴스 전동기를 위한 구동시스템의 역률개선과 고효율에 관한 연구)

  • Han Dae-Hee;Choi Jun-Hyuk;Yoon Yong-Ho;Jeong Dong-Hyo;Kim Do-Gun;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.11-15
    • /
    • 2002
  • Switched Reluctance Motor (SRM) offers the advantages of simple and robust motor construction, high speeds and high efficiencies over a wide operating range of torque and speed, excellent controllability. However, SRM has the disadvantages of high current harmonics, and low power factor because of a capacitor filter is inserted in the power converter and inductance of SRM is high, it has pulse waveform of current. This paper deals with an energy efficient converter fed SRM system with the reduced harmonics and improved power factor and with higher efficiency. The validity of the proposed scheme is verified via experiment. We are implemented the proposed control system using 80C196KC micro-controller.

  • PDF

Robust maximum power point tracker using sliding mode controller for the single-stage grid-connected photovoltaic system (슬라이딩 모드 제어기를 사용한 계통연계형 태양광 발전시스템의 강인한 최대전력점 제어기 설계)

  • Kim, Il-Song;Park, Jin-Sik;Jung, Sin-Myung;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.340-342
    • /
    • 2005
  • A sliding mode controller for the grid-connected photovoltaic system has been presented. This controller is constructed from the time-varying sliding surface In order to control the sinusoidal inductor current and solar array power simultaneously. The proposed controller can achieve the tight regulation of current and power under the parameter variation environment.

  • PDF

Robust control of End order deadbeat current controller considering calculation time delay for UPS inverter (연산시간지연을 고려한 UPS 인버터용 2차 데드비트 전류 제어기의 강인 제어)

  • Kim, Byoung-Jin;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1056-1058
    • /
    • 2000
  • Deadbeat technique has been proposed as a digital controller for an UPS inverter to achieve the fast response to a load variation and to conserve a very low THD under a nonlinear load condition. This scheme contains a fatal drawback, sensitivity against parameter variation and calculation time delay. This paper proposes a second order deadbeat current controller, which fundamentally solves the calculation time delay problem and certainly guarantees the robustness of the parameter's variation. This is shown theoretically and practically through simulation and experiment.

  • PDF

Manufacturing Driver and Measuring Performance of Disk type Single Phase Switched Reluctance Motor (DSPSRM) (디스크형 단상 SRM의 구동드라이브 제작과 성능 측정)

  • Lee, Jong-Han;O, Yeong-Ung;Lee, Eun-Ung;Lee, Min-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • The main advantages of DSPSRM lie in the simple robust construction, low manufacturing cost and simple driving circuit. Especially, it is possible to make shortly the axial length of DSPSRM. therefore, it is suitable to setup this motor in a narrow space. For practical use, prototype of DSPSRM was already manufactured. In this paper, we explain driving method and design driving circuit of DSPSRM. And then speed, torque and efficiency are measured. As a result of measurement, the torque was constant at normal speed and the speed was linearly increased as the current increase. Therefore, we verify that DSPSRM is suitable for low-speed fan load.

  • PDF

Single-Stage Double-Buck Topologies with High Power Factor

  • Pires, Vitor Fernao;Silva, Jose Fernando
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.655-661
    • /
    • 2011
  • This paper presents two topologies for single-stage single-phase double-buck type PFC converters, designed to operate at high power factor, near sinusoidal input currents and adjustable output voltage. Unlike the known buck type PFC topologies, in which the output voltage is always lower than the maximum input voltage, the proposed converters can operate at output voltages higher than the ac input peak voltage. A reduced number of switches on the main path of the current are another characteristic of the two proposed topologies. To shape the input line currents, a fast and robust controller based on a sliding mode approach is proposed. This active non-linear control strategy, applied to these converters allows high quality input currents. A Proportional Integral (PI) controller is adopted to regulate the output voltage of the converters. This external voltage controller modulates the amplitude of the sinusoidal input current references. The performances of the presented rectifiers are verified with experimental results.

Design of VMS Fuzzy Feedback Controller for VMS Routing Information (대안경로 안내용 VMS 퍼지 피드백 제어기법)

  • Park, Eun-Mi;O, Hyeon-Seon;Yang, Tae-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • Variable Message Signs have been used for providing information on the current traffic conditions. However, it is considered more important to achieve optimal traffic allocation among the alternative routes by strategic VMS information provision. Fuzzy control is very effective and efficient to deal with such systems that are too complex and uncertain to build mathematical models. In this paper, a fuzzy feedback controller for VMS is proposed, whose goal is to achieve the travel time equilibrium between the two alternative routes. The performance of the suggested controller is implemented and examined using MATLAB/Simulink. More robust controller applicable to a real highway network is suggested for the further research.

Generalized predictive control of P.W.R. nuclear power plant (일반화된 예측제어에 의한 가압경수형 원자로의 부하추종 출력제어에 관한 연구)

  • 천희영;박귀태;이종렬;박영환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.663-668
    • /
    • 1990
  • This paper deals with the application of a Generalized Predictive Control (CPC) to a Pressurized Water Reactor (P.W.R) Nuclear Power Plant. Generalized Predictive Control is a sort of Explicit Self-Tuning Control. Current self-tuning algorithms lack robustness to prior choices of either dead-time (input time delay of a plant) or model order. GPC is shown by simulation studies to be superior to accepted self-tuning techniques such as minimum variance and pole-placement from the viewpoint that it is robust to prior choices of dead-time or model order. In this paper a GPC controller is designed to control the P.W.R. nuclear power rlant with varying dead-time and through the designing procedure the designer is free from the constraint of knowing the exact dead-time. The controller is constructed based on the 2nd order linear model approximated in the vicinity of operating point. To ensure that this low-order model describes the complex real dynamics well enough for control purposes, model parameters are updated on-line with a Recursive Least Squares algorithm. Simulation results are successful and show the possibilities of the GPC control application to actual plants with varying or unknown dead-time.

  • PDF