• 제목/요약/키워드: Robust Speed Control System

검색결과 388건 처리시간 0.14초

Robust Controls of a Galvanometer : A Feasibility Study

  • Park, Myoung-Soo;Kim, Young-Chol;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제1권2호
    • /
    • pp.94-98
    • /
    • 1999
  • Optical scanning systems use glavanometers to point the laser beam to the desired position on the workpiece. The angular speed of a galvanometer is typically controlled using Proportional+Integral+Derivative(PID) control algorithms. However, natural variations in the dynamics of different galvanometers due to manufacturing, aging, and environmental factors(i.e., process uncertainty) impose a hard limit on the bandwidth of the galvanometer control system. In general, the control bandwidth translates directly into efficiency of the system response. Since the optical scanning system must have rapid response, the higher control bandwidth is required. Auto-tuning PID algorithms have been accepted in this area since they could overcome some of the problems related to process uncertainty. However, when the galvanometer is attached to a larger mechanical system, the combined dynamics often exhibit resonances. It is well understood that PId algorithms may not have the capacity to increase the control bandwidth in the face of such resonances. This paper compares the achieable performance and robustness of a galvanometer control system using a PID controller tuned by the Ziegler-Nichols method and a controller designed by the Quantitative Feedback Theory(QFT) method. The results clearly indicate that-in contrast to PID designs-QFT can deliver a single, fixed controller which will supply high bandwidth design even when the dynamics is uncertain and includes mechanical resonances.

  • PDF

RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어 (Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network)

  • 김은태;이성열
    • 전자공학회논문지SC
    • /
    • 제40권4호
    • /
    • pp.243-250
    • /
    • 2003
  • 본 논문에서는 RBF 신경망 외란 관측기를 이용한 영구자석형 동기모터의 속도추종 제어기를 제안한다. 먼저 공칭 모델에 대하여 입출력 선형화에 기반한 속도 제어기를 설계하고 RBF 신경망 외란 관측기에 의해 시스템의 블확실성을 보상한다. 시스템의 파라미터와 부하 토크의 변동을 동시에 추정하는 RBF 신경망 외란 관측기를 이용함으로써 제안한 제어 알고리즘은 시스템의 불화실성에 강인한 특성을 갖는다. 마지막으로 모의실험을 통하여 제안된 제어기의 타당성을 검증한다.

고속 고정도 자동정렬장치에 관한 연구 (A study on high speed, high precision auto-alignment system)

  • 박대헌;이성훈;김가규;이연정;이승하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.32-35
    • /
    • 1997
  • A recent development in the Flat Panel Display(FPD) industry requires an auto-alignment system which is operated in high speed and high precision. In the FPD production process, aligning photo-mask with respect to guide mark printed in the glass should be accomplished in the accuracy of sub-micron order. So the system has high bandwidth and needs a dedicated control system which is fast and robust enough to control linear motors in precise manner. Proposed auto-alignment system structure in this presentation which consists of the master controller board, the DSP position controller board which controls 3 axis precision linear motors, the servo system and the man machine interface software. Designed and tuned under repeated experiments, the proposed system showed a reasonable performance in the aspect of rise time and steady state error.

  • PDF

새로운 슬라이딩 면을 가지는 BLDC 전동기의 위치 제어에 관한 연구 (A Study on the Position Control of BLDC Motor with a New Sliding Surface)

  • 이대식;박수식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.719-727
    • /
    • 1999
  • A robust position control method of the BLDC motor using a new sliding mode control strategy is presented. The main property of variable structure system(VSS) is that the system response is robust and insensitive to parameter variations and external disturbances in the sliding mode. When using the conventional VSS, generally the reaching phase problem occurs, which cause the system response to be sensitive to parameter variations and external disturbances. Furthermore, the speed of response is relatively slow because the swithching surface is a linear function. In order to overcome these problems, VSS with nonlinear sliding surface eliminating reaching phase is proposed. The validity of the proposed scheme is shown by results of simulations of simulations and experiments for the BLDC motor with variable load.

  • PDF

The Control of SFFS in the Office Environments and It's Integration

  • Kim, Jung-Su;Lee, Min-Cheol;Lee, Won-Hee;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2164-2169
    • /
    • 2005
  • SFFS(Solid Freeform Fabrication System) can quickly makes models and prototype parts from 3D computer-aided design (CAD) data. Three dimensional printing(3DP) is a kind of the solid freeform fabrication. The 3DP process slices the modeling data into the 50-200um along to z axis. And we pile the powder and make the manufactures. A manufacture is made by the SFFS has the precision of the 50um. Therefore the x-y table of SFFS to move a printhead must be the system that has a high speed and accuracy. So we proposed the SMCSPO algorithm for SFFS. The major contribution is the design of a robust observer for estimating the state and the perturbation of the timing belt system, which is combined with a robust controller. The control performance of the proposed algorithm is compared with PD control by the simulation and the experiment. The control algorithm of the SFFS is presented in the office environment. The system between control system and printhead for the SFFS is also integrated

  • PDF

PID-관리 복합형 제어기를 이용한 직류 전동기의 강인한 속도제어 (Robust Speed Control of DC Motor Using PID-Supervision Hybrid Controller)

  • 전정채;조현섭;박왈서
    • 조명전기설비학회논문지
    • /
    • 제12권4호
    • /
    • pp.70-74
    • /
    • 1998
  • 산업 자동화의 고정밀도에 따라 직류 전동기는 강언제어가 요구되고 있다. 하지만 PID 제어기를 갖는 전동기 제어 시스템이 부하 외란의 영향을 받게되면 제어 시스템의 강인제어는 어렵게 된다. 이에 대한 보완적인 한 방법으로 본 논문에서는 전동기 제어시스템올 위한 PID-관리 복합형 제어기법을 제시하였다. 만약 오차가 구속영역 내에 있고, 시스템이 안정한 상태에 있다면 관리 제어기는 사용되지 않고 PID 제어기만 동작한다. 관리 제어기는 오차가 구속 경계에 도달하게 되면 오차를 구속 영역내로 들어가도록 제어를 시작한다. 우리는 PID-관리 복합형 제어 시스램의 오차가 시스템 설계자의 허용한도 내에서 유지되고 전체적으로 안정함을 증명하였다.

  • PDF

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche;Madjid, Kidouche;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.125-134
    • /
    • 2014
  • This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

High Performance of Self Scheduled Linear Parameter Varying Control with Flux Observer of Induction Motor

  • Khamari, Dalila;Makouf, Abdesslam;Drid, Said;Chrifi-Alaoui, Larbi
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1202-1211
    • /
    • 2013
  • This paper deals with a robust controller for an induction motor (IM) which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV system because of speed and rotor resistance affine dependence. Their values can be estimated on line during systems operations. The simulation and experimental results largely confirm the effectiveness of the proposed control.

토크를 물리량으로 가지는 적응제어 구조의 센서리스 벡터제어 (Adaptive Speed Identification for Sensorless Vector Control of Induction Motors with Torque)

  • 김도영;박철우;최병태;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.230-230
    • /
    • 2000
  • This paper describes a model reference adaptive system(MRAS) for speed control of vector-controlled induction motor without a speed sensor. The proposed approach is based on observing the instantaneous torque. The real torque is calculated by sensing stator current and estimated torque is calculated by stator current that is calculated by using estimated rotor speed. The speed estimation error is linearly proportional to error between real torque and estimated torque. The proposed feedback loop has linear component. Furthermore proposed method is robust to parameters variation. The effectiveness is verified by equation and simulation

  • PDF

상전도 흡인부상시스템에서의 속도특성에 따른 강인한 제어기에 대한 연구 (A study on the robust control considering speed characteristics for EMS system)

  • 임달호;권병일;홍정표;허진;정인성;이상우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.68-70
    • /
    • 1995
  • The controller for magnetically suspended vehicles considering the speed characteristics is presented. Generally, the attraction force of magnet is determined by input current and air gap. However, when MAGLEV runs at high speed, induced eddy currents in the rail decrease the attraction force. Thus control characteristics of MAGLEV become deteriorated. Therefore, the variation of attraction force according to speed must be considered. Thus we analyzed the speed characteristics of the magnet by FEM. Also, we study on the control characteristics according to speeds, and design the controller considering the decline of levitation force using Neural Network.

  • PDF