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Abstract – This paper deals with a robust controller for an induction motor (IM) which is represented 

as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and 

robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a 

linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance 

and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor 

flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV 

system because of speed and rotor resistance affine dependence. Their values can be estimated on line 

during systems operations. The simulation and experimental results largely confirm the effectiveness 

of the proposed control. 
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1. Introduction 

 

The Induction motor is widely used in industry due to the 

simple mechanical structure and easy maintenance. However 

this motor presents a challenging control problem for three 

reasons. The dynamical system is highly nonlinear, the rotor 

flux is not usually measurable and finally the rotor resistance 

value varies considerably with a significant impact on the 

system dynamics. The trends in induction motor control 

system is to use effective robust controller design such as 

H∞ and other robust control approaches [1-4]. Furthermore, 

the main advantage of using field-oriented control of voltage- 

controlled induction motor is that good performance can be 

achieved via non-linear state feedback [5].  

In this work, the synthesis of a LPV system controller 

use a linear matrix inequality (LMI) approach [6, 7] and 

Lyapunov theory [8]. LPV systems are a special class of 

systems, which are linear time invariant (LTI) system for 

every fixed value of the parameter vector θ(t) This 
parameter can be measured on line during control operation. 

Also the LPV control technique can eliminate the tedious 

process of manually tuning control, gain and can provide a 

systematic gain-scheduling method [9-12]. In our case it is 

assumed that only the stator current and the rotor speed are 

available for measurement, the rotor resistance estimation 

is beyond the scope of this work. The control law consists 

of fast inner loop used to track stator current reference 

generated by the Lyapunov theory associated to a sliding 

mode control of the flux and the rotor speed. This approach 

shows good robustness and high performance with respect 

parameter and load torque variation.  

The induction motor model described in the (α, β) frame 

can be written as an LPV system which can be translated in 

polytopic representation because of affine dependence with 

the rotor speed and the rotor resistance. This feature will be 

exploited in designing a self gain scheduled LPV feedback 

controller for the inner loop [14, 15, 16]. Also, the LPV motor 

structure can be used to improve the robustness of the flux 

observer and to compute the worst case flux estimation 

error in terms of H∞ norm respecting parameter variation 

[17]. The paper is organized as follows. In Section 2, the 

LPV modeling and control synthesis conditions are derived 

for affine parameter dependent systems. In section 3 the 

control structure of the stator current is given. In section 4 

robust non linear controls is obtained for the speed and flux 

control. In section 5 the robust flux observer synthesis with 

mixed sensitivity structure is given. Validation with 

numerical simulations for all theoretical resulting and 

interpretations are presented in section 6 and section 7.  

 

 

2. Induction Motor LPV Model 

 

2.1 Induction motor model  
 
The state space representation of the induction motor in 

the stator reference frame is given as follows: 
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with ω=θ1 , 2 rRθ = . 

where )i,i( ss βα are the stator current components, 
),( ss βα φφ are the rotor flux component and, )V,V( ss βα are 

the stator voltage component. 

The electromagnetic torque is given by: 
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L

M
PT rs

r
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2.2 Polytopic induction motor representation  
 
LPV model of induction motor is described by state 

space representation of the form 
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Cxy
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Where [ ] [ ]Tr
T

)t(R),t(, ω=θθ=θ 21 is a time varying 

parameter. According to [18] and based on the theory of 

heating materials, the rotor resistance Rr can be taken as 

time varying parameter since it can be accurately estimated 

on line [19] Thus: 
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Specifically for our problem, the parameter vector 
)t(θ has the following convex decomposition 
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where αi gives the corner of polytopic parameter range. 

The corner values of parameter range are 
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At the vertices values of θ, the plant matrix is: 
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The structure of the LPV controller of the system (7) is 

than given by polytopic representation as following: 
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3. LPV Stator Current Control 

 

LPV stator current controller is designed in the stator 

frame. Its main advantage is that the inconveniences 

related to the Park transformation which could significantly 

affect the performance are avoided [18].  

 

3.1 LPV control background 

 

2L Gain performance 

Consider an open loop LPV system P  described by 
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where y denote the measured output, z the controlled 

output, w the reference and disturbance inputs and u the 

control inputs. The matrices in (9) are affine functions of 

the parameter vector that varies in polytope Θ with vertices 
θ1,…,θj that is: 
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The LPV synthesis problem consists in finding a 

controller K(θ) described by: 
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Such that the closed- loop system (11) (with input w and 

output z) is internally stable and the induced L2-norm of 

w→ z is bounded by a given number γ > 0 for all possible 
parameter trajectories. 
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The characterization of robust stability and performance 

for the closed-loop system Pcl (11) is proved by the 

following theorem: 

 

Theorem: 

The LPV system (11) has a quadratic stability and gain 

level if there exists a matrix such that 
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This implies for synthesis inequalities (12) that, without 

loss of generality, we can replace the search over the 

polytope Θ by the search over the vertices of this set 
consequently, condition (12) can be reduced to a finite set 

of linear matrix inequalities (LMI). 

 

3.2 Computation of self-scheduled LPV controller 
 
We assume that parameter dependence of the plant p is 

affine and Θ is polytope with vertices θj, j=1,2,…,r. 

According the references [6] and [7] the LPV controller 

K(θ) can be computed through the following steps: 

� Compute the vertex controllers Kj = (AKj, BKj, CKj, 0), (1 

≤ j ≤ r) and Solve the set of LMIs (13) and (14) 
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(*,*) denotes terms whose expressions follow the 

requirement that the matrix is self-adjoint. This step gives 

( )KjKjKj Ĉ,B̂,Â and symmetric matrices X and Y 

� Compute KjKj B,A  and KjC  by  

( ) T
KjjjKjjKjKj MCXBYCBYXAANA 22

1 −−−= −
;  

 KjKj B̂NB 1−= ; 
T
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Where N and M are matrices such that I – XY = NMT 
 
Finally the state space matrices of the LPV polytopic 

controller K(θ) as a convex combination of the vertex 

controllers is given by 
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3.3 Loop shapping-mixed sensitivity structure 
 
To reach objectives in terms of performances and 

robustness of system control we have to introduce weighting 

functions acting as frequency filters on the I/O signals of 

the systems [20] and [21]. It can be shown that robust 

stability, reference tracking, disturbance and noise attenuation 

can be defined with sensitivity function ( ) 1−−= GKIS  

complementary sensitivity function SIT −=  and the 

closed loop transfer function KS.  

Thus, H∞ mixed sensitivity criterion respect following 

inequality: 1<
∞

KSW

SW

T

s
  

where WT must be a high-pass filter function to insure 

robustness against neglect dynamics and WS a low-pass-

filter to guarantee good tracking accuracy. 

 

3.4 LPV current controller design 
 
The K(ω, Rr) as it is shown in Fig. 1 is a current LPV 

feedback controller allowing to tracks the set point 

reference isref. The input of controller is the difference 

between isref and is obtained from G(ω, Rr) representing the 

induction motor  

The current feedback controller is obtained using 

polytopic representation of induction motor model given 

by (1). The measured output is [ ]βα= ss i,iy , the external 

inputs is of reference current ,s ref s refw i iα β =   . The 

controller outputs are the stator voltage components 

[ ]βα= ss V,Vu . The robust multivariable LPV controller 

K(θ) has to provide satisfactory performance over the 

whole operating range of the motor. The LPV controller in 

polytopic representation with four vertices is computed 

using the LMI toolbox. 

Each vertex can be considered as an LTI controller with 

eight states. The L2-gain bound γ guaranteeing the closed 
loop system performance and stability is equal for our case 

to (γ =1.0002). In order to obtain the optimal controller the 

weighting function used are as following: 
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Fig. 1. Mixed sensitivity structure of H∞ tracking 
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4. Speed and Flux Controller 

 

The Lyapunov theory associate to sliding mode control 

technique is used to design speed and flux controller. This 

control system allows robust control of all transient 

electromagnetic phenomena in a motor. To simplify the 

synthesis procedure of controller the rotor flux is oriented 

on the d axis as it is given by following relations: 
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The induction motor model can be expressed in the 

synchronous frame and specifically the dynamics of flux 

and speed are given by the following equation: 
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Tl is the load torque and Te the electromagnetic torque 

given by  
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The equations defined by(18) and (19) can be rewritten 

as 

 

 











+=
ω

+=
φ

e

sd
rd

Tf
dt

d
J

i
Tr

M
f

dt

d

2

1

  (21) 

 

where : rd
r

r

L

R
f φ=1  and ω−−= fTf l2  

Practically, fi are non linear functions and strongly 

affected by temperature, saturation skin effects and 

different nonlinearities induced by harmonic pollution due 

to converters frequencies and noise measurements. The 

objectives is to determine a control law making possible to 

maintain flux orientation and tracking reference speed and 

flux even in the presence of parameter variations and 

measurement noises [20]. To do so we can write that 

iii ff̂f ∆+= , where if̂  is the true non linear feedback 

function (NLFF), if  is the effective NLFF and if∆  is the 

NLFF variation around if . The if∆  can be generated from 

the variations of parameters as indicated above. We assume 

that all of the iif β<∆ , where the iβ  are known bounds. 

Knowledge of the iβ  is not difficult obtain, since one can 

use a sufficiently large number to satisfy the constraint 

iif β<∆  

 













+∆+=
ω

+∆+=
φ

e

sd
rd

Tff̂
dt

d
J

i
Tr

M
ff̂

dt

d

22

11

 (22) 

 

Proposition: In the case of stator current and rotor flux 

state model, if the flux orientation constraints is satisfied 

the following control laws are used 
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where iiiK β≥ and 0>iiK  for i =1,…,3. 

Proof: Let the Lyapunov function related to the flux and 

speed dynamics defined by  
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This function is globally positive-definite over the whole 

state space. Its derivative is given by 
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Let us replace the control law (24) in (26) we obtain  
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All variation ∆fi can be absorbed by Kii > ∆fi. The Eq. 

(29) is satisfied since Kii > 0 and iiii Kf <β<∆ . 
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The function given in (28) is globally negative-definite. 

Hence, using Lyapunov's theorem we conclude that: 
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4. Flux Observer Design 

 

The flux observer has been performed using standard 

problem structure where the controller is in fact the 

observer and the same optimization mechanism is used to 

achieve the synthesis [13, 19]. The inputs and outputs are 

as it is indicate by Fig. 2 and robustness is improved by 

tacking into account rotor resistance and speed variations. 

The design consists of finding u = Gobs.y to minimize, 

closed-loop H∞ LPV norm from w to z according to the 

small gain theorem. The flux observer can be built up using 

polytopic representation of induction motor with mixed 

sensitivity structure and it is computed under LMI convex 

optimization using the LMI tool box. Described by 2²=4 

LTI corner, the observer has 6 states. 

Where , ,
s s m

w V Vα β η =    constitute the exogenous inputs, 

,z e eα β =    the outputs ,s sy i iα β =    the measurements  

and ˆ ˆ,T

r ru α βφ φ =    the control input. The tracking errors  

of rotorique flux components are given as ˆ
r reα α αφ φ= −  

and ˆ
r reβ β βφ φ= − . The robust quadratic stability and 

performance is achieved for γ = 0.0086 using following 
shaping filter: 
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Fig. 3 gives a general description of the diagram block 

suggesting an induction motor control scheme. As it is 

shown we note that flux given by an LPV observer and 

speed are nonlinear feedback-controlled. The stator current 

components are transformed into (α,β) frame and then 

controlled by an LPV controller.  
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Fig. 2. Mixed sensitivity structure for LPV flux observer 
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5. Simulation Results 

 

The performances of controllers are investigated by 

simulation on induction motor which parameters values are 

given in appendix. Full non-linear simulations were carried 

out for the speed, flux step demand and for parameter 

variation and load torque (see Fig. 4). the Fig. 5 and Fig. 6 

represent response of the rotor speed following the 

specified reference. At 1.4s a reversal speed test from 
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100rd/s to -100rd/s was performed with loaded machine 

(1.5Nm) at 0.2s. Fig. 8 shows good current reference 

tracking without any effect of parameter variation. We can 

note furthermore that the current peak stays within the 

admissible limits.  

In order to demonstrate the efficiencies of the proposed 

control a comparative study is done.  

Fig. 9 represents the induction motor control with two 

kinds of controllers; the PI controllers are designed in the 

aim to have the same responses (speed and currents) with 

the robust controllers. 

Figs. 10 and 11 represent the system response for the 

two kinds of controllers. Figs. 10(a) and (b) show speed 

response versus time with sane dynamics. We observe that 

with the robust speed controller, a good tracking speed was 

achieved without any effect of parameters variation and 

that isn’t the case with a PI controller. Figs. 11(a) and (b) 

show currents response versus time; we note that for the 

LPV current controllers, a good tracking of references was 

achieved without any effect of variation of parameters, is  

0 0.5 1 1.5 2 2.5
-20

-15

-10

-5

0

5

10

15

20

Time (s)

T
o

rq
u

e
 (

N
m

)

 

 

 

Fig. 6. Torque versus time 
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Fig. 7. Current tracking response with LPV controller 
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Fig. 8. Current zoom 
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Fig. 9. Designs of the speed controller: (a) Robust controllers 

(LPV and Lyapunov approach); (b) PI controllers 
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Fig. 10. Speed responses: (a) Robust controllers (LPV and 

Lyapunov approach); (b) PI controllers 
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contrast on the PI controller. 

 

 

6. Laboratory Setup Based on DS1103 

 

The basic structure of the laboratory setup is depicted in 

Fig. 12. The DC motor is used as a load. The IM stator is 

fed by a converter controlled directly by the DS1103 board. 

The dSPACE DS1103 PPC is plugged in the host PC. The 

encoder is used for the mechanical speed measure. The 

sensors used for the currents and voltages measure are 

respectively LA-25NP and LV-25P. The Interface to 

provide galvanic isolation to all signals connected to the 

DS1103 PPC controller. 

In Fig. 13 view of the laboratory setup is shown. All 

parts of the laboratory setup can be seen in this photo. 

 

 

7. Experimental Results 

 

In order to validate our approach, experimental tests 

were carried out using the proposed control IM scheme. 

The testing conditions were as follows. The loaded (1.5 

Nm) IM started with a constant acceleration 50 (rd/s²), 

after 2 s, the speed was maintained to 100 (rd/s). After that, 

a reversal speed test was applied to the loaded machine at 

13 s, where the speed changed from 100 (rd/s) to -100 

(rd/s), Fig. 14. 

Figs. 14, 16 and 17 show speed and stator current 

response versus time; we observe that with the proposed 

control a good tracking speed end currents were achieved. 

The same holds for torque tracking shown in Fig. 15. 
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Fig. 14. Speed tracking 
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Fig. 11. Currents response: (a) Robust controllers (LPV 

and Lyapunov approach); (b) PI controllers 

 

 

Connector Panel CP1103 

DS1103  dSPACE 

Master :     PowerPC 604e 

Slave :    DSPTMS320F240 

Converter 

Grid 

 Stator voltage & 

current sensors 

( LEM ) 

Induction Motor Laod  

(DC Generator) 
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Fig. 15. Torque versus time 
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Fig. 16. Current tracking responses with LPV controller 
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Fig. 17. Current zoom 

 

 

8. Conclusion 

 

The main objectives of this paper are to show the high 

performances provided by the robust nonlinear controller 

over the entire operating range. An LMI based approach 

has been proposed to design a quadratically stable flux 

observer and stator currents controller. In both cases we 

have obtained a time varying system which ensures a finite 

attenuation for a given closed-loop transfer function which 

represents the design requirement. It is clearly turned out 

that with using LPV techniques associated with Lyapunov 

feedback controller the robustness and stability of the 

whole drive were demonstrated. The main advantage of 

using LPV methods is that they provide a systematic way 

of designing an H∞ flux observer for the induction motor 

assuming the availability of the rotor speed and resistance. 

The Stability of flux estimator was demonstrated using 

small-gain based analysis. Simulation and experimental 

results clearly revealed high performances of the induction 

motor control according to the profile defined above.  
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APPENDIX 

 

The machine parameters are as follows: 

Resistance e of the rotor;   4   
r

R = Ω  

Resistance of the stator;  8
s

R = Ω  

Inductance of the rotor; 0.47
r

L H=  

Inductance of the rotor;  0.47
s

L H=  

Mutual inductance; 0.44M H=  

Inertia;  
2

0.04J Kgm=  

 Number of poles pairs p=2 
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