• Title/Summary/Keyword: Robust Parameter Estimation

Search Result 185, Processing Time 0.025 seconds

Reclaimer Control: Modeling , Parameter Estimation, and a Robust Smith Predictor Design (원료채집기의 제어: 모델링, 계수추정, 견실한 스미스 예측기의 설계)

  • Kim, Sung-Hoon;Hong, Keum-Shik;Kang, Dong-Hunn
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.8
    • /
    • pp.923-931
    • /
    • 1999
  • In this paper, a modeling and a robust time-delay control for the reclaimer are investigated. Supplying the same amount of a raw material throughout the reclamation process from the raw yard to a sinter plant is important to keep the quality of the molten steel uniform in blast furnaces. As the actual parameter values of the reclaimer are not available, the boom rotational dynamics are modeled as a second order differential equation with unknown coefficients. The unknown parameters in the nominal model are estimated using a recursive estimation method. Another important factor in the control design of the reclaimer is the large time-delay in output measurement. Assuming a multiplicative uncertainty, that accounts for both the unstructured uncertainty neglected in the modeling and the structured uncertainty contained in the parameter estimation, a robust Smith predictor is designed. A robust stability criterion for the multiplicative uncertainty is also derived. Following the work of Goodwin et al. [4], a quantifying procedure of the multiplicative uncertainty bound, through experiments , is described. Experimental and simulation results are provided.

  • PDF

Robust $H_{\infty}$ Control for Bilinear Systems with Parameter Uncertainties via output Feedback

  • Kim, Young-Joong;Lee, Su-Gu;Chang, Sae-Kwon;Kim, Beom-Soo;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.386-391
    • /
    • 2003
  • This paper focuses on robust $H_{\infty}$ control for bilinear systems with time-varying parameter uncertainties and exogenous disturbance via output feedback. $H_{\infty}$ control is achieved via separation into a $H_{\infty}$ state feedback control problem and a $H_{\infty}$ state estimation problem. The suitable robust stabilizing output feedback control law can be constructed in term of approximated solution to x-dependent Riccati equation using successive approximation technique. Also, the $H_{\infty}$ filter gain can be constructed in term of solution to algebraic Riccati equation. The output feedback control robustly stabilizes the plant and guarantees a robust $H_{\infty}$ performance for the closed-loop systems in the face of parameter uncertainties and exogenous disturbance.

  • PDF

Design of Suboptimal Robust Kalman Filter for Linear Systems with Parameter Uncertainty (파라미터 불확실성을 갖는 선형 시스템에 대한 준최적 강인 칼만필터 설계)

  • Jin, Seung-Hee;Kim, Kyung-Keun;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.620-623
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal Kalman filter with robust state estimation performance for system models represented in the state space, which are subjected to parameter uncertainties in both the state and measurement matrices. Under the assumption that the uncertain system is quadratically stable, if the augmented system composed of the uncertain system and the filter is controllable, the proposed filter can provide the upper bound of the estimation error variance for all admissible uncertain parameters. This upper bound can be represented as the convex function of a parameter introduced in the design procedure, and the optimized upper bound of the estimation error variance can also be found via the optimization of this convex function.

  • PDF

Robustness, Data Analysis, and Statistical Modeling: The First 50 Years and Beyond

  • Barrios, Erniel B.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.543-556
    • /
    • 2015
  • We present a survey of contributions that defined the nature and extent of robust statistics for the last 50 years. From the pioneering work of Tukey, Huber, and Hampel that focused on robust location parameter estimation, we presented various generalizations of these estimation procedures that cover a wide variety of models and data analysis methods. Among these extensions, we present linear models, clustered and dependent observations, times series data, binary and discrete data, models for spatial data, nonparametric methods, and forward search methods for outliers. We also present the current interest in robust statistics and conclude with suggestions on the possible future direction of this area for statistical science.

An Efficient Global Motion Estimation based on Robust Estimator

  • Joo, Jae-Hwan;Choe, Yoon-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.408-412
    • /
    • 2009
  • In this paper, a new efficient algorithm for global motion estimation is proposed. This algorithm uses a previous 4-parameter model based global motion estimation algorithm and M-estimator for improving the accuracy and robustness of the estimate. The first algorithm uses the block based motion vector fields and which generates a coarse global motion parameters. And second algorithm is M-estimator technique for getting precise global motion parameters. This technique does not increase the computational complexity significantly, while providing good results in terms of estimation accuracy. In this work, an initial estimation for the global motion parameters is obtained using simple 4-parameter global motion estimation approach. The parameters are then refined using M-estimator technique. This combined algorithm shows significant reduction in mean compensation error and shows performance improvement over simple 4-parameter global motion estimation approach.

  • PDF

Automatic Selection of the Turning Parametter in the Minimum Density Power Divergence Estimation

  • Changkon Hong;Kim, Youngseok
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.453-465
    • /
    • 2001
  • It is often the case that one wants to estimate parameters of the distribution which follows certain parametric model, while the dta are contaminated. it is well known that the maximum likelihood estimators are not robust to contamination. Basuet al.(1998) proposed a robust method called the minimum density power divergence estimation. In this paper, we investigate data-driven selection of the tuning parameter $\alpha$ in the minimum density power divergence estimation. A criterion is proposed and its performance is studied through the simulation. The simulation includes three cases of estimation problem.

  • PDF

Robust Adaptive Observer Design for a Class of Nonlinear Systems via an Optimization Method (최적화 기법에 의한 비선형 시스템에서의 강인한 적응 관측기 설계)

  • Jung Jong-Chul;Huh Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1249-1254
    • /
    • 2006
  • Existing adaptive observers may cause the parameter drifts due to disturbances even if state estimation errors remain small. To avoid the drift phenomena in the presence of bounded disturbances, several robust adaptive observers have been introduced addressing bounds in state and parameter estimates. However, it is not easy for these observers to manipulate the size of the bounds with the selection of the observer gain. In order to reduce estimation errors, this paper introduces the (equation omitted) gain minimization problem in the adaptive observer structure, which minimizes the (equation omitted) gain between disturbances and estimation errors. The stability condition of the adaptive observer is reformulated as a linear matrix inequality, and the observer gain is optimally chosen by solving the convex optimization problem. The estimation performance is demonstrated through a numerical example.

Design of suboptimal robust kalman filter using LMI approach (LMI기법을 이용한 준최적 강인 칼만 필터의 설계)

  • 진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1477-1480
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal robust Kalman filter using LMI approach for system models in the state space, which are subjected to parameter uncertainties in both the state and measurement atrices. Under the assumption that augmented system composed of the uncertain system and the state estimation error dynamics should be stable, a Lyapunov inequality is obtained. And from this inequaltiy, the filter design problem can be transformed to the gneric LMI problems i.e., linear objective minimization problem and generalized eigenvalue minimization problem. When applied to uncertain linear system modles, the proposed filter can provide the minimum upper bound of the estimation error variance for all admissible parameter uncertainties.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF

Design of Incoming Ballistic Missile Tracking Systems Using Extended Robust Kalman Filter (확장 강인 칼만 필터를 이용한 접근 탄도 미사일 추적 시스템 설계)

  • 이현석;나원상;진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.188-188
    • /
    • 2000
  • The most important problem in target tracking can be said to be modeling the tracking system correctly. Although the simple linear dynamic equation for this model has used until now, the satisfactory performance could not be obtained owing to uncertainties of the real systems in the case of designing the filters baged on the dynamic equations. In this paper, we propose the extended robust Kalman filter (ERKF) which can be applied to the real target tracking system with the parameter uncertainties. A nonlinear dynamic equation with parameter uncertainties is used to express the uncertain system model mathematically, and a measurement equation is represented by a nonlinear equation to show data from the radar in a Cartesian coordinate frame. To solve the robust nonlinear filtering problem, we derive the extended robust Kalman filter equation using the Krein space approach and sum quadratic constraint. We show the proposed filter has better performance than the existing extended Kalman filter (EKF) via 3-dimensional target tracking example.

  • PDF