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Automatic Selection of the Tuning Parameter in the
Minimum Density Power Divergence Estimation'

Changkon Hong' and Youngseok Kim!

ABSTRACT

It is often the case that one wants to estimate parameters of the dis-
tribution which follows certain parametric model, while the data are con-
taminated. It is well known that the maximum likelihood estimators are
not robust to contamination. Basu et al.(1998) proposed a robust method
called the minimum density power divergence estimation. In this paper, we
investigate data-driven selection of the tuning parameter « in the minimum
density power divergence estimation. A criterion is proposed and its per-
formance is studied through the simulation. The simulation includes three
cases of estimation problem.

Keywords: Density power divergencé, Density-based minimum divergence method,
Robustness, Tuning parameter

1. Introduction

In parametric density estimation, density-based minimum divergence meth-
ods have long history. These methods include the maximum likelihood method,
the minimum Hellinger distance method ([ [ f% (z) - f 3 (z; 0)]%dz), and the
minimum L -distance method ([ If(x) — f(z; 0)|dz). One of the practical
drawbacks of maximum likelihood estimation is the nonrobustness to contami-
nation and model misspecification. On the other hand, it was shown that min-
imum Hellinger distance method and minimum L ;-distance method have excel-
lent robustness properties (see Beran (1977), Donoho and Liu (1988) ). However,
these methods also have drawback that they need the calculation of nonparamet-
ric estimator f(:z;) with associated complication of smoothing parameter selec-
tion. To avoid the complication of nonparametric smoothing, Hjort (1994) and
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Scott (1999) hired the minimum Lg-distance method. Since the squared Lg-
distance between the underlying density g (z) and the assumed density f (z; 6)
is

Jts@ 102
- [s*@ar-2 [ 1@ 0)g@do+ [ 1 (@i 0)da,

minimizing Lo-distance is equivalent to minimizing
[12@i0de-2 [ 1@:0)9(c)da.

The minimum Ly -distance estimator (called LoE by Scott (1999) ) is defined as
the minimizer of the empirical version

n
2(z;0 aza:—zl X;: 0
[P @iodo-2 3 11 0)
which does not need any smooth nonparametric density estimation. The Lo F is
robust, but under the assumed model it is inefficient. Basu et al. (1998) suggest
a new family of density-based divergence measures called ‘density power diver-
gences’. The family is indexed by a single parameter « which controls the trade-
off between robustness and asymptotic efficiency of the estimators. This family
includes the Kullback-Leibler divergence ( Kullback and Leibler (1951)) ( when
a = 0) and Lg-distance (when o = 1). Therefore, the minimum density power
divergence estimator can be thought as a bridge between eflicient-but-nonrobust
estimator MLE and robust-but-inefficient estimator LoE. Furthermore, it does
not require nonparametric density estimation.

In this research, we will study the selection of the tuning parameter . We
will suggest a data-driven criterion and study its performance. In Section 2, we
will reintroduce the density power divergence, summarize the results of Basu et
al. (1998), and suggest a data-based criterion for selecting «. In Section 3, the
performance is to be studied through simulation. The concluding remarks and
further research will be given in Section 4.
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2. The Minimum Density Power Divergence Estimator and The
Suggested Criterion for a-Selection

2.1. The minimum density power divergence estimator

In this subsection, we briefly reintroduce the density power divergence and
summarize the results of Basu et al. (1998). Consider a parametric family of
distributions {F;}, indexed by the unknown parameter ¢ € £ C R’ having
densities {f;} with respect to Lebesgue measure. Let G be a distribution function
having density g with respect to Lebesgue measure.

Basu et al. (1998) define the divergence d, (g, f) between density functions
g and f by

tio )= [ {0 -+ D) s re@+ Lo @, @

for @ > 0. When a = 0, the integrand in expression (2.1) is undefined, and the
divergence dy (g, f) can be defined as

o (9,) = limy da (9, §) = [ 9(2)log {9 () /1(2)} d.

They call the family of divergence d,, as a function of a, ‘the class of density
power divergence’. Note that do (g, f) is the Kullback-Leibler divergence and
di (g, f) is the squared Lo -distance between g and f.

Theorem 1. The quantity do (g, f) is a divergence in that it is nonnegative for
all g, f € G and is equal to zero if and only if f = g almost everywhere.

The proof is given in Basu et al. (1998).
Now, suppose that random sample X, ..., Xy are drawn from G. The min-

imum density power divergence estimator(MDPDE) 6, is defined to be the

minimizer of

1 _‘ n
/ft1+a (2) dz = (14 ) n? Zl £2(X) (2.2)

7=
with respect to t. In particular when o = 0, 50 is the maximum likelihood es-
timator if it exists; when a = 1, the estimator ¢ is the minimum Lo-distance
estimator and is called the LoE estimator by Scott (1999). Note that the mini-
mization of density power divergence does not require any smooth nonparametric
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estimate of g, in contrast to work of Cao et al. (1995). Basu et al. (1998) show
that the estimator 6, through the density power divergence becomes less and less
efficient as o increases. Scott (1999) shows that LoE estimator (when o = 1) is
robust but inefficient under assumed model. Therefore, in this paper we restrict
our interest to the values of @ between 0 and 1. For 0 < a < 1, the class of den-
sity power divergences provides a smooth bridge between the Kullback-Leibler
divergence and the Lo -distance.

For general families of f;, the minimizer 8, of (2.2) is obtained from the
estimating equation

w7 Y w (X £ )~ [ () £ 6) de = 0, (23)

i=1

where us(z) = 0 log fi(2) /8t is the maximum likelihood score function. This
shows that the minimum power divergence estimator §a can be thought to be
an M-estimator, that is, it solves an equation of the form Y, (X;, t) =0 (see
Hampel et al. (1986) ).

Basu et al.(1998) show the following theorem holds. In the following,
represents the best fitting value of the parameter, in the sense of minimizing the
divergence d, (g, ft), whereas ¢t denotes a generic element of Q.

Theorem 2. Under certain regularity conditions, there ewists a solution @\a of
the estimating equation (2.3) such that, as n — oo,

(i) O, is consistent for 8, and

(i1) nt (9\& — 0) is a asymptotically multivariate normal with vector mean zero
and covariance matriz J 'K J7!, where J = J(0) and K = K (0) are
given by

J = / ug (2) ug? (2) £, 4% (2) de
+ / {09 (2) — aug () uT Ha(2) = fo (2) } fo*(2) de (2.4)
and
K = [ us(ehus” ()9 () ds - 667, (2.5)

Here £ = [ ug (2) f3*(2) g (2) dz and vy (2) = —0{ug (2)} / 08 is the infor-
mation function.
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2.2. Selection of the tuning parameter «

It is often the case that our interest lies in estimating the parameters of
the true parametric distribution while the data are drawn from a contaminated
distribution. To be more specific, suppose that the true distribution is Fyp« but
the data are drawn from a contiminated distribution G = (1 —€)Fp« + eH. Here
H is a contaminating distribution and let us call G as 'underlying distribution’.
Assume that it is our interest to estimate 6* using the (possibly contaminated)
data. As mentioned in the introduction, MLE is not robust to contamination and
as a remedy for this the MDPDE is suggested by Basu et al. (1998). In MDPD
estimation, Basu et al. (1998) uses prefixed a which is not far from 0. They
achieved the robustness at the expense of efliciency. As was pointed out in Basu
et al. (1998), there is no universal way of selecting an appropriate (prefixed) a.
But when the data are not contaminated, it is advisable to use a = 0(MLE),
since MLE is asymptotically efficient in this case. And it is obvious that if the
underlying distribution is close to the true one, then very small « is preferred. It
is also suspected that as the underlying distribution is more contaminated, rather
larger value of @ may give better results. In this direction of argument, Basu et
al. (1998) commented that “in some practical applications, ‘prior motions of the
extent of contamination’ could be hired in determining «”. In this paper, we
want to suggest a data-driven criterion for selecting o without the ‘prior motions
of the extent of contaminations’.

- To make the problem simple, we only study one parameter case. But the
several parameter case can be treated in a similar way. Again, it should be
emphasized that 6 is the best fitting value of the parameter in parametric model
and depends on both underlying distribution G and tuning parameter o. In
general, § is different from the true value 6* of the parameter. How far is § from
the true parameter §*? Let us see this by examining an example of normal mean
estimation problem. Let ¢(z;a,b) be the pdf of N(a,b) and suppose that the true
distribution is N'(6*, 1) while underlying distribuiton is (1—&) N (6*,1)+eN (61, 1).
Then fi(2) = ¢(z;t,1) and g(2) = (1 —e)¢(z; 6%,1) +ep(2; 61, 1). It can be shown
that 8 = (1 — €)0* + €6, for a = 0. But for o > 0 with € > 0, we cannot obtain
a closed form expression of 8. It can be shown, however, that if € > 0, & goes to
6* as a increases. Does this necessarily mean larger values of o would give better
results for estimating the ture parameter 8*?7 The answer is negative because too
large o can result in too large variance of the estimator. In the simulation study
of subsection 3.1 we will set §* = 0, #; = 10, and here and now we calculate
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the (approximate) numerical values of @ with these values of 6* and 6;. Table
1 shows the values of & for various values of & with ¢ = 0.1. We can see that 0
is quite close to the ture mean #* = 0 for the values of @ between 0.05 and 0.1.
Since by theorem 2 MDPD estimator consistently estimates 6, it is quite robust
to contamination in estimating 6* for these values of a.

Table 1. Values of € in normal mean, with 8* = 0,6, = 10, and
e =0.1,

0.0 0.005 0.01 0.02 0.03 0.04
1.0 0.83 0.68 0.436 0.276 0.172
0.05 0.06 0.07 0.08 0.09 0.1
0.11 0.07 0.046 0.03 0.02 0.014

DR TR

When there is no contamination (¢ = 0), § = 6* by theorem 1 and the
asymptotic variance of the MDPD estimator 6, is minimized at & = 0. This is
closely related to the fact that MLE is asymptotically efficient when there is no
contamination. This motivates our seggestion of estimated asymptotic variance
as a criterion for selecting o.

The asymptotic variance J 2 K is a function of a as well as a function of
both the underlying distribution G and 6. Let us denote the variance V =
V (a; 8,G). Fortunately, it is (heterogeneously ) linear in g and we don’t need
smooth nonparametric estimation of g. We can get a natural estimator V of
V by replacing § and G by §a and G, respectively, where G,, is the empirical
distribution. Since 8, can be obtained from the estimating equation (2.3) for
given o the estimator V can be expressed as a function of & only. Let us denote
V by V (a). We suggest ¥ (a) as a criterion for selecting a.

Suppose that the data X1, ..., X, are generated from the underlying distri-
bution G. Then the estimated J and K can be obtained as follows

J(a) = (1+a)/{u§a (2) }2f§i+a (z)dz—/ Vg, (z)f§i+a (2)dz
+ [ [ @ -atug, P |52 @) 6,
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= (1+ a) / { Ug, (z) }2 f§i+a (z) dz — / Vg, (z) f§j+a (2)d=z
1>

o > [ vg, (Xi) — a{ug (X;) ¥ ] 3% (Xa),
=1
R(a) = / {5, () 3 az"‘ (z) dGp, — [ / ug, (2) 132 (2) dGn]2
n n 9
- I P - [ 2w ]
=1 =1
where, u;,a(z) = a%— log fo (2) (9:@, and ”ﬁa(z) = —%{ue (2)} ’9:@, | And

we can obtain the criterion V = J(a) 2 K ().

3. Simulation Study

In this section, we will study the performance of the criterion through the
simulation. The data are generated from the contaminated distribution G =
(1 ~ €)Fp« + €H for £ =0.00, 0.05, 0.10, 0.15,0.20, where Fy« is the true para-
metric distribution and H is a contaminating distribution. In subsection 3.1,
the mean of the univariate normal distribution will be estimated. Estimating
the standard deviation of the normal distribution will be treated in subsection
3.2. The subsection 3.3 is on the estimation of the exponential distribution. For
each e-contaminated underlying model, 100 samples of sample size n= 100 will
be generated and the optimal a’s, say @’s, and the resulting estimators ) & are
computed.

3.1. Mean of the univariate normal distribution

In this subsection, we consider the problem of estimating the mean 6* of the
assumed normal distribution, N(6*, 0?), with 02 known, while the underlying
distribution is a mixture of two normal distributions N(6*,¢%) and N(6,0?).
In this case, G = (1 — &) N(6*,02) + eN(61,0?). Without loss of generality, we
assume o2=1. Since

@(a)=uz (2) =2 —fa, 7(a)=wv; () =1,
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the quantities J (a) and K (a) are as follows:

Fla) = +a/{ )P 1,4 () dz

1=1

_ %i{l—a(Xi—aa) o ew{ - }}

=1

«

R(a) = %Z{ QP - [ 13 g:(Xi)r
1=1
o i_AaQ 2o
— %;(Xi_ga)2l:\/]é_ﬂ-exp{_()(%)}:l

1 & 1 Xi-0)24117)"
B - Xo—0 | —— I el A7 .
{n;(z a)[ /—27Texp{ 2 }] }

We generate the data from G with 6* = 1, §; = 10. For each ¢ (=0.00, 0.05,
0.10, 0.15, 0.20), 100 samples of sample size n=100 are drawn. For each sample,
we compute & as follows;

i) First, fix a € [0,1] and compute 6.

ii) Compute V (a).

iii) Repeat i) and ii) for the values of o = 0.000,0.001,--- , 1.

iv) Find & at which the minimum of V («) is achieved.

The mean(MEAN), standard deviation(STD) and the first and third quartiles
(Q1 and Q3) of MLE and 85 are given in Table 2. For the uncontaminated data
sets(e = 0), our estimation procedure chooses very small s and the statistics
for 8z and MLE are almost the same. (For more than half of the simulated
data sets with ¢ = 0, & = 0 and thus 5& = MLE). For the contaminated data
sets(e > 0), 5 shows better robustness to the contamination and has smaller
standard deviation than MLE for each £ > 0.

3.2. Standard deviation of the univariate normal distribution

Now we investigate the case of estimating the standard deviation 6* of the
assumed normal distribution, N (0, g+’ ), while the underlying distribution is a
mixture of two normal distributions. Since



Automatic Selection of Tuning Parameter in MDPD Estimation 461

Table 2. Mean, standard deviation and first and third quartiles of

MLE and 6 & for the normal mean.

€
Estimator Statistic 0.00 0.05 0.10 0.15 0.20

MEAN 0.014 0.536 1.048 1.515 1.967

MLE STD 0.109  0.261 0313  0.308  0.452
Q1 20.067 0.351  0.830  1.284  1.679
Q3 0.000  0.708  1.232  1.687  2.243
MEAN  0.013  0.005  0.003  0.007  0.028
0 STD 0.108  0.106  0.092  0.108  0.123
Q1 0.070  -0.070  -0.060  -0.075  -0.050
Q3 0.090  0.085  0.065  0.080  0.100
MEAN  0.051  0.147 0165  0.178  0.158
& STD 0.092 0139  0.131  0.162  0.095
Q1 0.000 0094 0111 0122  0.129
Q3 0062  0.142  0.160  0.155  0.155
2 2
E(a)=u§a(z)=f—3—5i and TU(a)=v; (z)—i%—b\l—y
a a4 (8% [s7

~~ (87
J(a) =
() 6.2 /(2m)e (1 + @)
n 2 X2 1 2
EE NN
ni:l 9a4 0042 9a3 ea
Amme )
27 0, 20,2 ’
~ 1 & /X2 1)\ 1 X2 2
K(a) = n (’\23#"_) { 0 eXp(* :2>}
~\§3 8,/ \ varb, 20,
X
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Table 3. Mean, standard deviation and first and third quartiles of MLE

and /0\@ for the standard deviation of the normal distribution.

€
Estimator Statistic 0.00 0.05 0.10 0.15 0.20

MEAN 1.008 1.873 2.530 3.191 3.647

MLE STD 0.150 0.683 0.829 0.877 0.964
Q1 0.891 1.419 1.881 2.585 2.978

Q3 1.118 2.105 3.074 3.799 4.266

MEAN 1.002 1.029 1.074 1.094 1.137

(?a STD 0.075 0.096 0.085 0.113 0.112
Q1 0.945 0.962 1.013 1.023 1.061

Q3 1.054 1.102 1.125 1.162 1.195

MEAN 0.038 0.319 0.406 0.468 0.531

a STD 0.102 0.146 0.104 0.090 0.096
Q1 0.000 0.279 0.356 0.423 0.485
Q3 0.000 0.421 0.470 0.530 0.585

The data are generated from G = (1 — &) N(0, 1) + e N(0, 4). (Here 8* =1
and ¢; = 2). In the same way as in the previous subsection, &’s and ) &'s are
computed. The results are given in Table 3. From the results we can again see
that the estimator ga and MLE show similar behavior when ¢ = 0, and é}, has
better robustness and stability than MLE.

3.3. Exponential distribution

In this subsection, we will estimate the parameter * of the exponential dis-
tribution £(6). Since the true density is f3(2) = (1/6*) exp(—2z/6*), z > 0,

—
Do
™

|~

o~ z
Ua:UAZZX—'*A—,
(2) =05, = 5

and the quantities K () and J () are given by
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o~ [8')
J(a) =
(@) (1 + ) g2t
1 & {2Xi 1 (Xi 1)2}
+ = o 22—
nz:] 00(3 902 02 904
1 X; }“
X =~ exp| — = ,
{Fee(-3)
~ 1 & /X 1h2( 1 X; 2a
K(a) = - (A——;\—) {A—exp(——,\—l)}
nz:l 6 911 [ o

Again 100 samples of sample size n = 100 are generated from G = (1—¢) £(1)+

e £(5), for each . Here 6* = 1 and 6; = 5.

Table 4. Mean, standard deviation and first and third quartiles of MLE

and @?\a for the exponential distribution.

£

Estimator Statistic 0.00 0.05 0.10 0.15 0.20
MEAN  0.994 1.218 1412 1556 1.738

MLE STD 0.111  0.177  0.237 0225 0.271
Q1 0923 1.093 1.239 1391 1535

Q3 1.070  1.323 1558  1.685  1.892

MEAN  0.98  1.067 1.144 1196  1.226

02 STD 0.113 0.128 0.139  0.172  0.188
Q1 0.917 0.966 1.029 1.095 1.104

Q3 1.067 1171 1237 1.299  1.376

MEAN  0.035 0.223 0320 0.392 0.518

a STD 0.113  0.159 0.206 0.199  0.228
Q1 0.000 0.135 0.198 0272  0.365

Q3 0.017  0.286 0422 0450 0.642
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Table 4 shows the statistics for MLE, 5@, and &. Again, these results show
that 65 is almost the same as MLE when € = 0. When € > 0, 5 is robust to the
contamination and has smaller variation than MLE.

4. Concluding Remarks

In this paper, we investigate how to select the tuning parameter oo in MDPD
estimation when estimating the true parameter #* is the object of estimation
while the data are contaminated. We suggest a data-driven criterion V () for
a-selection and study its performance through simulation. The simulation study
includes three cases, the normal mean, the standard deviation of normal distri-
bution, and the exponential distribution. In all of the three cases, MLE and
0 a show almost the same performance for the uncontaminated data. For the e-
contaminated data, as € increases 65 shows better robustness and stability than
MLE.

Since the object of estimation is to get a good estimator of the true parameter
6* not of & and MDPD estimator does not consistently estimates 6* but @, more
reasonable criterion would be (6 — 6*)2+ V. One of the referees pointed out this.
But it is thought to be quite impossible to get reasonable estimate of (6 — 6*)2
because the data are contaminated. Fortunately, if there is no contamination,
6 = 6" and MLE (o = 0) minimizes V. One of our research purposes is automatic
selection of @ ~ 0 when data are not contaminated, which was shown to be
nearly achieved by our criterion through simulation. We haven’t studied the
asymptotic properties of & and 55, yet. It is expected to be comlicated to derive
the asymptotic properties and that would be our future research.
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